期刊文献+

LZ50车轴钢的疲劳起裂阈值及强度 被引量:5

Fatigue Cracking Threshold and Strength of Railway LZ50 Axle Steel
下载PDF
导出
摘要 应用复型技术和逆序观测法对LZ50车轴钢光滑试样的早期疲劳短裂纹扩展行为进行试验研究。根据有效短裂纹理论,采用当量I型主导有效短裂纹的概念描述材料群体疲劳短裂纹萌生、扩展的规律,利用最大微观结构障碍的概念推导该材料的疲劳起裂阈值及疲劳强度。研究结果如下:每个试样的有效短裂纹起源于试样表面的某些铁素体,这些裂纹萌生和扩展过程具有强烈的随机多裂纹特征;由于受最大微观组织障碍的约束,当量I型主导有效短裂纹的扩展率具有初期下降和后期上升的特征;疲劳短裂纹的起裂阈值与最低扩展率和最大材料微观组织障碍相关,其值为1.973 76MPa.m0.5;起裂阈值所对应的疲劳强度具有随表面缺陷当量尺寸的增加而下降的特点,当尺度大于50μm时,疲劳强度低于常规疲劳极限。 Early propagation behavior of short fatigue cracks on small smooth specimens of railway LZ50 axle steel was experimentally studied with the replicating technique and reverse observation technique. The initia- tion and propagation of collective short fatigue cracks were described in terms of the concept of equivalent type I dominant crack in effective short fatigue cracks according to the effective short fatigue theory. And the fatigue cracking threshold and corresponding strength of the material were deduced in consistency with the maximum micro-structural barrier capacity of the material. The research results reveal as follows: The effective short fa- tigue cracks of all specimens originate from the weakest surface ferrites, and their processes of initiation and propagation are strongly subjected to a random multi-cracks system; because of the maximum micro-structural barrier effect, growth rates of the equivalent cracks are characterized by early-stage descending and later-stage ascending; the deduced fatigue cracking threshold corresponding to the maximum micro-structural barrier is 1. 973 76 MPa·m0.5 ; the fatigue strength corresponding to this threshold tends to decrease with increase of the equivalent crack size, and this strength will be lower than the conventional fatigue limit when the material has a surface defect with an equivalent crack size over 50μm.
作者 赵永翔 何忠
出处 《铁道学报》 EI CAS CSCD 北大核心 2012年第11期36-42,共7页 Journal of the China Railway Society
基金 国家自然科学基金(50575189)
关键词 车轴钢 疲劳短裂纹 起裂阈值 阈强度 axle steel short fatigue cracks cracking threshold threshold strength
  • 相关文献

参考文献26

  • 1PEARON S.Initiation of Fatigue Cracks in Commercial A-luminum Alloys and the Subsequent Propagation of VeryShort Cracks[J].Engineering Fracture Mechanics,1975,7(2):235-247.
  • 2MILLER K J,De Los Rios ER.The Behaviour of ShortFatigue Cracks[M].London:Mechanical Engineering Pub-lications,1986:124-130.
  • 3RITCHIE R O,LANKFORD J.Small Fatigue Cracks[M].Warrendale,USA:A Publication of the Metallurgi-cal Society,1986:89-96.
  • 4NEWMAN J C Jr,RAJU I S.An Empirical Stress-intensi-ty Factor Equation for the Surface Crack[J].EngineeringFracture Mechanics,1981,15(1-2):185-192.
  • 5SHIVAKUMAR KN,NEWMAN J C Jr.Stress IntensityFactors for Large Aspect Ratio Surface and Corner Cracksat a Semi-circular Notch in a Tension Specimen[J].Engi-neering Fracture Mechanics,1991,38(6):467-473.
  • 6NEWMAN J C Jr,PHILLIPS E P,Everett R A.FatigueAnalyses under Constant-and Variable-amplitude LoadingUsing Small-crack Theory[R].Hanover:NASA Centerfor Aerospace Information,1999:209-217.
  • 7NEWMAN J C Jr,PHILLIPS E P,SWAIN MH.Fatigue-life Prediction Methodology Using Small-crack Theory[J].International Journal of Fatigue,1999,21(2):109-119.
  • 8ZHANG G P,WANG Z G.Short Fatigue Crack Growthunder Mixed Mode Loading in Ni3Al Alloy Single Crystals[J].Materials Science and Engineering(A),1997,229(1-2):129-136.
  • 9MILLER K J.The Short Crack Problem[J].Fatigue&Fracture of Engineering Materials&Structures,1982,5(3):223-232.
  • 10MILLER K J.The Behaviour of Short Fatigue Cracks andTheir Initiation PartⅠ:A Review of Two Recent Books[J].Fatigue and Fracture of Engineering Materials andStructures,1987,10(1):75-91.

共引文献5

同被引文献96

  • 1兰晓峰,张渝.重载铁路钢轨相控阵探伤系统研究[J].仪器仪表学报,2019,40(12):47-55. 被引量:10
  • 2李春来,秦庆斌,吴圣川,刘洋,王家鑫,刘国田.城市铁路转向架焊接构架强度有限元校核[J].焊接技术,2019,0(10):91-93. 被引量:3
  • 3鲁连涛,张卫华.金属材料超高周疲劳研究综述[J].机械强度,2005,27(3):388-394. 被引量:26
  • 4ZHAO,Yong-xiang(赵永翔),HE,Chao-ming(何朝明),YANG,Bing(杨冰),HUANG,Yu-zhong(黄郁仲),GAO,Qing(高庆),WU,Ping-bo(邬平波).PROBABILISTIC MODELS FOR LONG FATIGUE CRACK GROWTH RATES OF LZ50 AXLE STEEL[J].Applied Mathematics and Mechanics(English Edition),2005,26(8):1093-1099. 被引量:5
  • 51 Tanaka S I, Tezuka K. Strength design method for the axle of high speed railway ear. J of the Society of Materials Science of Japan, 1990, 39 (436) : 52-57.
  • 6Hirakawa K. High speed railway axles. J of The Japan Society of Mechanical Engineers, 1998, 101(952):146- 148.
  • 7Xu Gang, Wang Li-na, Li Shi-qi, Wang Le. Hot de- formation behavior of EA4T steel. Aeta Metallurgiea Sinica(English Letters), 2012, 25(5) :374-382.
  • 8Moon A, Sangal S, Mondal K. Corrosion behaviour of new railway axle steels. Transactions of the Indian In-stitute of Metals, 2013, 66(1) :33-41.
  • 9Zhang J W, Lu L T, Wu P B, Ma J J, Wang G G, Zhang W H. Inclusion size evaluation and fatigue strength analysis oI 35CrMo alloy railway axle steel. Materials Science & Engineering A, 2013, 562:211- 217.
  • 10Yang Z G, Yao G, Li G Y, Li S X, Chu Z M, Hui W J, Dong H, Weng Y Q. The effect of inclusions on the fatigue behavior of fine-grained high strength 42CrMoVNb steel. International J of Fatigue, 2004, 26:959-966.

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部