摘要
“四色猜想”提出将近 15 0年了 ,但至今尚未解决。经数学家们研究“四色猜想”问题等价于平面图是可 4着色。若能证明极大平面图可 4着色 ,则“四色猜想”问题即迎刃而解。研究极大平面图的着色问题 ,就涉及到极大平面图的结构特点及其构造方法 ,因此 ,研究构造极大平面图的方法就是必要的了。通过对极大平面图的结构研究 ,每个结点的邻接结点均构成圈 ,由此提出了构造极大平面图的“图加点法”。该法简单规范 ,可无遗漏地构造任意阶极大平面图 。
Since it was put forward 150 years ago,“Four Color Conjecture”hasn't been solved yet.According to many mathematicians' study,“Four Color Conjecture”is equal to the theory that a plan can be filled with exactly four colors.So,if this theory could be proved,“Four Color Conjecture”could be readily solved.The studying of this theory involves the characteristics of a plan's structure and its construction method.Therefore,it is indispensible to study the method of constructing plan.The study of its construction reveals that all of the nodes which are adjacent to one certin node make up a ring,which brings forward“Ring & Node”,a method to construct a maximum plate graph .This method,which is simple and standardized,can construct plans of every rank without exception,and the workability of the method is demonstrated.
出处
《北京机械工业学院学报》
2000年第1期26-29,共4页
Journal of Beijing Institute of Machinery