期刊文献+

一种基于近邻规则的缺失数据填补方法 被引量:15

A Missing Data Imputation Method Based on Neighbor Rules
下载PDF
导出
摘要 数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间的相似度,用最相似的规则项值填补缺失值。实验结果表明,该方法具有较高的填补正确率。 Data missing is a common problem in data mining and data analysis process, it can lead to reliable decision-making if it is deleted with the cases directly. An imputation method of solving the missing data is put forward, which is based on association rule. In this method, the rules are classified by the rules' consequent, and then calculate the similarity of constrained rules cases' items and missing cases' items, impute the missing value with the most similar rule's item. Experimental results show this method has higher imputation accuracy.
出处 《计算机工程》 CAS CSCD 2012年第21期53-55,62,共4页 Computer Engineering
关键词 关联规则 缺失数据 填补 近邻规则 相似度 K最近邻法 association rules missing data imputation neighbor rule similarity K-Nearest Neighbor(KNN) algorithm
  • 相关文献

参考文献9

  • 1Song Qinbao, Shepperd M. A New Imputation Method for Small Software Project Data Sets[J]. Journal of Systems and Software, 2007, 80(1): 51-62.
  • 2Setiawan N A, Venkatachalam P, Hani A F M. Missing Attribute Value Prediction Based on Artificial Neural Network and Rough Set Theory[C]//Proc. of BMEI'08. Sanya, China: [s. n.], 2008.
  • 3Penny K I, Chesney T. Imputation Methods to Deal with Missing Values When Data Mining Trauma Injury Data[C]//Proc. of the 28th International Conference on Information Technology Interfaces. [S. I.]: IEEE Press, 2006.
  • 4Vateekul P, Sarinnapakorn K. Tree-based Approach to Missing Data Imputation[C]//Proc. of IEEE International Conference on Data Mining Workshops. Miami, USA: IEEE Press, 2009.
  • 5Twala B, Cartwright M. Ensemble Imputation Methods for Missing Software Engineering Data[C]//Proc. of the l lth IEEE International Symposium on Software Metrics. Como, Italy: IEEE Press, 2005.
  • 6Garcia-Laecina P J, Sancho-Gomez J L. K Nearest Neighbors with Mutual Information for Simultaneous Classification and Missing Data Imputation[J]. Neurocomputing, 2009, 72(7-9): 1483-1493.
  • 7Liao Zaifei, Lu Xinjie, Yang Tian, et al. Missing Data Imputation: A Fuzzy K-means Clustering Algorithm over Sliding Window[C]//Proc. of the 6th International Conference on Fuzzy Systems and Knowledge Discovery. [S. 1.]: IEEE Computer Society, 2009: 133-138.
  • 8Wu Jianhua, Song Qinbao, Shen Junyi. An Novel Association Rule Mining Based Missing Nominal Data Imputation Method[C]//Proc. of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. [S. 1.]: IEEE Press, 2007: 244-249.
  • 9UCI Machine Learning Repository[EB/OL]. (2010-08-11). http:// archive.ics.uci.edu/ml/datasets.html.

同被引文献109

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部