期刊文献+

基于半监督支持向量机的交互式遗传算法

Interactive Genetic Algorithm Based on Semi-supervised SVM
下载PDF
导出
摘要 为减轻用户疲劳并将交互式遗传算法应用于复杂的优化问题中,提出一种基于半监督支持向量机的交互式遗传算法。根据标记样本和未标记样本几何特性派生出数据依赖的核函数,以此构建半监督支持向量机,再以自训练方法进行高可信未标记样本的批量选择,实现用户评价代理模型的高泛化性能。将该方法应用于基于内容的图像检索系统,结果表明其能有效加快进化收敛的速度,提高优化成功率。 In order to alleviate user fatigue and apply the interactive Genetic Algorithm(GA) into complicated optimization problems, this paper presents interactive GA based on Semi-supervised Support Vector Machine(S3VM), which is used to establish the surrogate model. According to the geometry of the underlying marginal distribution from both labeled data and unlabeled data, it derives a data-dependent kernel in order to establish S3VM. Self-training method is employed for batch selecting the high reliable unlabeled samples. The method is applied to relevance feedback image retrieval, and experimental results show it is effective to accelerate the evolution of the convergence and increases the optimization success ratio.
出处 《计算机工程》 CAS CSCD 2012年第21期182-184,188,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61170038)
关键词 交互式遗传算法 半监督学习 支持向量机 核函数 代理模型 用户疲劳 Interactive Genetic Algorithm(IGA) semi-supervised learning Support Vector Machine(SVM) kernel function surrogate model user fatigue
  • 相关文献

参考文献8

  • 1Takagi H. Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evolution[J]. Proceedings of the IEEE, 2001, 89(9): 1275-1296.
  • 2Biles J A, Anderson P G, Loggi L W. Neural Network Fitness Functions for a Musical IGA[C]//Proc. of the International Symposium on Intelligent Industrial Automation and Soft Computing. Millet, Canada:[s. n.], 1996: 39-44.
  • 3周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 4Lora X, Sastry K, Goldberg D E, et al. Combating User Fatigue in Igas: Partial Ordering, Support Vector Machines, and Synthetic Fitness[C]//Proc. of Genetic and Evolutionary Computation Conference. Washington D. C., USA: ACM Press, 2005: 1363- 1370.
  • 5Wang Shangfei, Wang Xufa. An Improved Interactive Genetic Algorithm Incorporating Relevant Feedback[C]//Proc. of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou, China: [s. n.], 2005: 2996-3001.
  • 6Zhang Tong, Oles F J. A Probability Analysis on the Value of Unlabeled Data for Classification Problems[C]//Proc. of the 17th International Conference on Machine Learning. San Francisco, USA: [s. n.], 2000: 1191-1198.
  • 7Chapelle O, Zien A. Semi-supervised Classification by Low Density Separation[C]//Proc. of the 10th International Workshop on Artificial Intelligence and Statistics. Piscataway, USA: IEEE Press, 2005: 57-64.
  • 8Sindhwani V, Niyogi P, Belkin M. Beyond the Point Cloud: From Transductive to Semi-supervised Learning[C]//Proc. of ICML'05. Bonn, Germany: [s. n.], 2005.

二级参考文献5

  • 1Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J]. Proc of the IEEE, 2001,89 (9) : 1275-1296.
  • 2Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA[A]. Proc of the Int ICSC Symposium on Intelligent Industrial Automation and Soft Computing[C]. UK, 1996;B39-44.
  • 3Lee Joo-young, Cho Sung-bae. Sparse fitness evaluation for reducing user burden in interactive genetic algorithm [A]. 1999 IEEE Internatil Fuzzy Systems Conference Proceedings [C]. Seoul, 1999, 2:998-1003.
  • 4Sugimoto F, Yoneyama M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[A]. Proc of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems[C].Dunedin, 2001 :62-69.
  • 5王上飞,王胜惠,王煦法.结合SVM的交互式遗传算法及其应用[J].数据采集与处理,2003,18(4):429-433. 被引量:14

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部