期刊文献+

基于场强和凸壳的SIFT特征点匹配算法

SIFT Feature Point Matching Algorithm Based on Field Intensity and Convex Hull
下载PDF
导出
摘要 传统尺度不变特征变换(SIFT)匹配算法的匹配结果易受参数影响。为此,提出一种于场强和凸壳的SIFT特征点匹配算法。在原始SIFT匹配方法基础上,结合特征点群的凸壳,引入引力场强概念刻画特征点群之间的空间特征关系,以进行图像点模式匹配,在匹配中充分利用特征点的几何空间信息。实验结果表明,该算法具有较高的匹配正确率,能找到更多的特征匹配点。 To overcome the defects that the traditional Scale Invariant Feature Transform(SIFT) method is sensitive to parameters applied, a SIFT feature point matching algorithm based on field intensity and convex hull is proposed. Based on the traditional SIFT matching method and the convex hull of the point sets in template and observe images, a concept of the gravitational field intensity in physics is introduced to depict the space relationships between features points for image matching in this paper. The proposed algorithm makes full use of the space geometry relationship between feature points in matching process. Experimental results show that, by using the proposed algorithm, the correct rate of matching between the point sets can be greatly improved, and can get more feature matching point.
出处 《计算机工程》 CAS CSCD 2012年第22期159-162,166,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61165009)
关键词 点模式匹配 尺度不变特征变换 凸壳 场强 仿射 point pattern matching Scale Invariant Feature Transform(SIFT) convex hull field intensity affine
  • 相关文献

参考文献8

  • 1严磊,汪增福.基于多局部特征匹配的全自动图像拼接[J].计算机应用与软件,2010,27(10):5-7. 被引量:9
  • 2柯映林,朱伟东.基于局部特征匹配的对称面提取算法[J].计算机辅助设计与图形学学报,2005,17(6):1191-1195. 被引量:13
  • 3Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004,60(2): 91-110.
  • 4Mikolajczyk K, Cordelia S. A Performance Evaluation of Local Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 5Schonemann P. A Generalized Solution of the Orthogonal Procrustes Problem[J]. Psychometrika, 1966, 31 (3): 1-10.
  • 6Xia Shengping, Edwin R H. 3D Object Recognition Using Hyper-graphs and Ranked Local Invariant Features[EB/OL]. (2010-11-21). http://rd.springer.com/chapter/10.1007/978-3-540- 89689-0 16.
  • 7刘建军,夏胜平,郁文贤.基于SIFT特征的两阶段procrustes迭代匹配算法[J].信号处理,2010,26(6):854-858. 被引量:11
  • 8Barber C, Dobkin D, Huhdanpaa H. The Quickhull Algorithm for Convex Hulls[J]. ACM Transactions on Mathematical Software, 1996, 22(4): 469-483.

二级参考文献27

  • 1L.D. Cai, J. Mayhew. A Note on Some Phase Differencing Algorithms for Disparity Estimation International Journal of Computer Vision, 1997, 22 (2) : 111-124.
  • 2A. Oliva and A. Torralba. Modeling the Shape of the Scene : A Holistic Representation of the Spatial Envelope. IJCV, 2001,42(3) :145-175.
  • 3H. Bay, T. Tuytelaars, and L. V. Cool. Surf: Speeded Up Robust Features. ECCV. LNCS, 2006, 3951 ( 1 ) :404- 417.
  • 4T. Kadir, M. Brady, and A. Zisserman. An Invariant Method for Selecting Salient Regions in Images. Proc. Eighth ECCV, 2004, 1(1) :345-457.
  • 5David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints Intermational Journal of Computer Vision, 2004, 60(2):99-110.
  • 6Tony Lindenerg. Scale-Space for Discrete Signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(3), 234-254.
  • 7Krystian Mikolajczyk, Cordelia Schmid. A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1615-1630.
  • 8Shengping Xia and Edwin R. Hancock. 3D Object Recog- nition using Hyper-Graphs and Ranked Local Invariant Features. SSPR&SPR 2008, LNCS 5342 : 117-126.
  • 9P. Schonemann. A Generalized Solution of the Orthogonal Procrustes Problem. Psychometrika, 1966, 31 (3) : 1-10.
  • 10Shengping Xia, Hua Yu, Jianjun Liu, Lefeng Zhang, Rui Song. A Framework for Large Scale Object Indexing and Retrieval. Journal of Information & Computational Science 2009, 6 ( 3 ) : 869- 877.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部