期刊文献+

基于粒计算的K近邻多标签学习算法 被引量:4

K-nearest Neighbor Multi-label Learning Algorithm Based on Granular Computing
下载PDF
导出
摘要 K近邻多标签学习算法的近邻点个数取固定值,而没有考虑样本分布的特点,可能会将相似度高的点排除在近邻集外,或者将相似度低的点包含在近邻集内,影响分类器的性能。为此,将粒计算的思想引入近邻集的构建,提出一种新的K近邻多标签学习算法。通过粒度控制,确定近邻点集,使得领域内的样本点有高相似性,且此类样本能进入近邻集。实验结果表明,该算法的大多数评价指标均优于现有的多标签学习算法。 In Multi-label K-nearest Neighbor(ML-KNN) learning algorithm, the number of nearest neighbors is given in prior and its value is chosen without considering the distribution of samples, it is possible that highly similar samples are not in the nearest neighbor or low similar samples are in the nearest neighbor set, which affect the performance of the classifier. In view of this case, a novel ML-KNN algorithm is put forward based on the idea of Granular Computing(GrC), the nearest neighbor set is constructed with the controlling of the granular hierarchy, and the nearest neighbors of a sample have high similarity and highly similar samples can be added to nearest neighbor set. Experimental results show that most of the evaluation criteria in new algorithm are better than the traditional algorithm.
出处 《计算机工程》 CAS CSCD 2012年第22期167-170,175,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61073117) 国家"973"计划基金资助项目(2007BC311003) 安徽大学学术创新团队基金资助项目(KJTD001B) 安徽大学研究生学术创新基金资助项目(yfc090008)
关键词 多标签学习 粒计算 K近邻 粒度 评价指标 multi-label learning Granular Computing(GrC) K-nearest Neighbor(KNN) granularity evaluation index
  • 相关文献

参考文献8

  • 1Schapire R E, Singer Y. BoosTexter: A Boosting Based System for Text Categorization[J]. Machine Leaning, 2000, 39(2-3): 135-168.
  • 2Clare A, King R D. Knowledge Discovery in Multi-label Phenotype Data[C]//Proc. of the 5th European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Germany: Springer, 2001.
  • 3Zhang Minling. ML-RBF: RBF Neural Networks for Multi-labelLearning[J]. Neural Process Letters, 2009, 29(2): 61-74.
  • 4Elisseeff A, Weston J. A Kernel Method for Multi-labelled Classification[EB/OL]. (2010-11-21). http://www.citeulike.org/ group/4310/article/3482988.
  • 5段震,程家兴,张铃.基于覆盖的多标记学习方法研究[J].计算机工程与应用,2010,46(14):20-23. 被引量:1
  • 6Zhang Minling, Zhou Zhihua. ML-kNN: A Lazy Learning Approach to Multi-label Learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
  • 7张铃,张钹.问题求解理论及应用--商空间粒度计算理论及应用[M].2版.北京:清华大学出版社,2007.
  • 8Tsoumakas C~ Katakis I. Multi-label Classification: An Overview[J]. Intemational Journal of Data Warehousing and Mining, 2007, 3(3): 1-3.

二级参考文献18

共引文献1

同被引文献32

  • 1罗永军,王长松,曹建国,金丽娜,姚耕耘.兼顾板形的热连轧机负荷分配的优化[J].北京科技大学学报,2005,27(1):94-97. 被引量:5
  • 2TSOUMAKAS G, KATAKIS I. Muhi-label classification: an over- view[ J]. Database Technologies Concepts Methodologies Tools and Applications, 2007,2007(3): 1 -13.
  • 3BOUTELL M R, LOU J, SHEN X, et al. Learning multi-label scene classification[ J]. Pattern Recognition, 2004, 37(9) : 1757 - 1771.
  • 4HUANG S-J, ZHOU Z-H. Multi-tabel teaming by exploiting label correlations locally[ C]// AAAI 2012: Proceedings of the 26th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2012:949 -955.
  • 5ZHANG M, ZHANG K. Multi-label learning by exploiting label de- pendency[ C]//KDD 2010: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2010:999 - 1008.
  • 6ZHANG M, ZHOU Z. Multi-label neural networks with applications to functional genomics and text categorization [ J]. IEEE Transac- tions on Knowledge and Data Engineering, 2006, 18(10) : 1338 -1351.
  • 7SCHAPIRE R E, SINGER Y. BoosTexter: a boosting-based system for text categorization[ J]. Machine Learning, 2000, 39(2/3) : 135 - 168.
  • 8ZHANG M-L, ZHOU Z-H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7) :2038 - 2048.
  • 9TSOUMAKAS G, VLAHAVAS I. Random k-Labelsets: an ensem- ble method for multi-label classification [ C]// ECML 2007: Pro- ceedings of the 18th European Conference on Machine Learning, LNCS 4701, Berlin: Springer-Verlag, 2007:406 -417.
  • 10READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[ C]//ECML PKDD 2009: Proceedings of the 2009 European Conference on Machine Learning and Knowl- edge Discovery in Databases, LNCS 5782. Berlin: Springer-Verlag, 2009:254-269.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部