期刊文献+

MEMS加速度计温漂预测补偿模型 被引量:13

Thermal drift prognosis and compensation model of MEMS accelerometer
下载PDF
导出
摘要 温度漂移是影响MEMS加速度计实用效能的关键问题,为提高加速度计的精度和使用范围,需对温漂进行建模和补偿。首先通过温度循环试验对MEMS加速度计温漂特性进行了分析,然后分别采用曲面拟合法、SVM模型和RVM模型建立了温漂预测补偿模型,最后应用环境温度试验数据对模型进行检验和验证。结果表明:三种方法均能够有效的预测加速度计温漂,补偿后的温漂滞环开口由60 mg分别下降到5 mg、10 mg、15 mg。曲面拟合法简单、精度高,但对系统重复性要求高,且对噪声比较敏感;SVM模型法计算能力强,但计算量较大,模型参数较多;RVM模型法模型参数较少,计算量小,但训练时间较长,且预测精度不如其他两种方法高。 Thermal drift is a key factor that influences the practical effectiveness of MEMS accelerometer.The modeling and compensation of thermal drift are necessary for improving the precision and expanding the use scope.In this paper,the characteristics of thermal drift were analyzed according to the temperature cycling test.Thermal drift prognosis and compensation models were built by surface fitting,support vector machine and relevance vector machine,respectively.The testing results indicate that these three models are all effective in making prognosis on the thermal drift of accelerometer.After compensation,the hysteresis errors,with initial 60 mg,decreased to 5 mg,10 mg and 15 mg,respectively.The surface fitting method has the simplest structure and the highest precision,but its requirements on system repeatability are critical.The SVM model has greater calculation ability,but needs more parameters and computation.The RVM model needs less parameters and computation,but requires longer training time and has the lowest precision among the three models.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2012年第5期601-604,610,共5页 Journal of Chinese Inertial Technology
基金 总装"十二五"预研项目(513090203**)
关键词 微机械加速度计 温漂 滞环 曲面拟合 支持向量机 相关向量机 MEMS accelerometer thermal drift hysteresis surface fitting support vector machine relevance vector machine
  • 相关文献

参考文献8

  • 1董景新.惯性仪表-微机械加速度计[M].北京:清华大学出版社,2002.
  • 2Gulmammadov F. Analysis, modeling and compensation o1 bias drift in MEMS inertial sensors[C]//RAST '09. 4th International Conference. Istanbul, 2009: 591-596.
  • 3Vandemeer J E, Li G; McNeil A C. Analysis of thermal hysteresis on micromachined accelerometers[C]// Proceedings of IEEE Sensors. Motorola, Tempe, AZ, USA, 2003: 1235-1238.
  • 4Tanenhaus M, Geis T, Carhoun D, et al. Accurate real time inertial navigation device by application and processing of arrays of MEMS inertial sensors[C]// IEEE Position Location and Navigation Symposium(PLANS). Indian Wells, CA, USA, 2010: 20-26.
  • 5Tan S S, Liu C Y, Yeh L K, et al. Design of low-noise CMOS MEMS accelerometer with techniques for thermal stability and stable DC biasing[C]//Custom Integrated Circuits Conference (CICC). Hsinchu, Taiwan, 2010: 1-4.
  • 6Loui A, Elhadj S, Sirbuly D J, et al. An analytic model of thermal drift in piezoresistive microcantilever sensors[J]. Joumal of Applied Physics, 2010, 107(5): 054508-1-054508-13.
  • 7Zwahlen P, Anne-Marie Nguyen, Dong Yufeng, et al. Navigation grade MEMS accelerometer[C]//Proceedings of IEEE MEMS 2010. Hong Kong, China, 2010:631- 634.
  • 8Dong Y, Zwahlen P, Nguyen A M, et al. Ultra-high precision MEMS accelerometer[C]// Proceedings of IEEE, Transducers' 11. Beijing, China, 2011: 695-698.

共引文献1

同被引文献92

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部