摘要
We present a modified version of quark mass scaling via considering the important one-gluonexchange interaction between quarks in the quark mass density-dependent model. The properties of strange quark matter and the structure of strange stars are then studied with the new scaling and a self-consistent thermodynamic treatment. It is found that the one-gluon-exchange effect lowers the system energy considerably, makes the equation of state stiffer, and the sound velocity tends to the ultra-relativistic value faster, which make the biggest value of the maximum mass of strange stars become as big as approximately 2 times the solar mass, in accordance with the latest astronomical observations.
We present a modified version of quark mass scaling via considering the important one-gluonexchange interaction between quarks in the quark mass density-dependent model. The properties of strange quark matter and the structure of strange stars are then studied with the new scaling and a self-consistent thermodynamic treatment. It is found that the one-gluon-exchange effect lowers the system energy considerably, makes the equation of state stiffer, and the sound velocity tends to the ultra-relativistic value faster, which make the biggest value of the maximum mass of strange stars become as big as approximately 2 times the solar mass, in accordance with the latest astronomical observations.
基金
Supported by National Natural Science Foundation of China (11135011, 11045006)
Key Project from Chinese Academy of Sciences (Y12A0A0012)