期刊文献+

频率约束的三维连续体结构动力拓扑优化设计 被引量:15

DYNAMIC TOLOGICAL OPTIMAL DESIGN OF THREE-DIMENSIONAL CONTINUUM STRUCTURES WITH FREQUENCIES CONSTRAINTS
下载PDF
导出
摘要 针对频率约束和结构重量最小的动力拓扑优化问题,基于(independent continuous mapping,ICM)独立、连续、映射方法,建立了频率约束下的三维连续体拓扑优化模型.利用瑞利商和—阶泰勒展式对频率约束进行了显式化处理,并采用幂函数与复合指数函数作为过滤函数,将优化模型进行了标准化转换,利用对偶理论及数学规划法进行了求解.另外,利用质量矩阵和刚度矩阵过滤函数比值与动态约束处理了局部模态和模态交换等数值问题.最后,通过应用两类不同过滤函数的数值算例表明了文中模型及方法在处理动力拓扑优化问题上的合理性与有效性. The purpose of present work is to study structural optimal design of dynamics for three-dimensional (3D) continuum structures, and to aim at constructing topological optimal formulation by using ICM method, which is considering weight as object function and fundamental eigenfrequency as constraints. An explicit ex- pression of frequency-constraint(s) with respect to topological variables is obtained based on Rayleigh's quotient and first-order Taylor expansion. And two types of models with filter functions including power function and exponential function are standardized. As a result, the topology optimization problem is solved by the dual quadratic programming. Localized mode and mode switching often occurred in structural optimization with natural frequency constraints are handled by using filter functions and moving constraints in the optimal pro- cess. Finally, several numerical examples applying different filter functions in the optimal model axe analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.
出处 《力学学报》 EI CSCD 北大核心 2012年第6期1037-1045,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(11072009 11172013)~~
关键词 拓扑优化 独立连续映射方法 频率约束 三维连续体 topology optimization, ICM method, frequencies constraint, three-dimensional continuum structure
  • 相关文献

参考文献28

  • 1Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comp Meth Appl Mech Engrg, 1988, 71(1): 197-224.
  • 2Mlejnek HP, Schirrmacher R. An engineer's approach to optimal distribution and shape finding. Computer Methods in Applied Mechanics and Engineering, 1993, 106(1/2): 1-26.
  • 3Xie YM, Steven GP. Evolutionary structural optimization. Berlin: Springer-Verlag, 1997.
  • 4Sethian JA, Wiegmann A. Structural boundary design via level set and immersed interface methods. J Comput Hpys, 2000, 163:489-528.
  • 5Diaz A, Kikuchi N. Solution to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering, 1992, 35:1487-1502.
  • 6Ma ZD, Cheng HC, Kikuchi N. Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Computer Systems in Engineering, 1994, 5(1): 77-89.
  • 7Ma ZD, Kikuchi N, Cheng HC. Topological design for vibrating structures. Comput Methods Appl Mech Eng, 1995, 121:259-280.
  • 8Gea HC, Fu Y. Optimal 3D Stiffener design with frequency considerations. Advances in Engineering Software, 1997, 28:525-531.
  • 9Pedersen NL. Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization, 2000, 20:2-11.
  • 10Tcherniak D. Topology optimization of resonating structures using SIMP method. International Journal for Numerical Methods in Engineering, 2002, 54:1605-1622.

二级参考文献51

共引文献210

同被引文献92

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部