期刊文献+

非光滑区域上椭圆型特征值问题的间断有限元方法应用

DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC EIGENVALUE PROBLEMS IN NONSMOOTH DOMAIN
原文传递
导出
摘要 本文针对非光滑区域上椭圆特征值特征值问题利用间断有限元方法(DG)近似.利用大量的数值算例发现,DG方法对非光滑区域(凹角,裂缝等问题)上Laplace特征值问题的近似比协调有限元、非协调元(如C-R元),甚至比有限元校正格式有着更好的效果. Elliptic eigenvalue problems in nonsmooth domain by using of discontinuous galerkin (DG) methods were analyzed. From many numerical results we find that for elliptic eigen- value problems in nonsmooth domain DG methods provide better approximation than other methods, such as conforming of nonconforming finite element method, and finite element defect correction scheme.
作者 秦佩华
出处 《数值计算与计算机应用》 CSCD 2012年第4期293-300,共8页 Journal on Numerical Methods and Computer Applications
基金 国家高技术研究发展计划(编号:2010AA012301) 国家重点基础研究发展计划(编号:2010CB428403)资助
关键词 间断有限元 椭圆型方程 特征值问题 非光滑区域 discontinuous galerkin methods elliptic problems eigenvalue problem nonsmooth domain
  • 相关文献

参考文献12

  • 1Reed W H, and Hill T R. Triangular Mesh Mothods for the Neutron Transport Equation, Tech.Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
  • 2Cockburn B, Karniadakis G E, Shu C W. Discontinuous Galerkin Methods for Elliptic Problems,in Discontinuous Galerkin Mehtods. Theory, Computation and Applications, Lecture Notes inComput. Sci. Engrg. 11,Springer-Verlag, New York, 2000,89-101.
  • 3Bassi F, and Rebay S. A High-order Accurate Discontinuous Finite Element Method for theNumerical Solution of the Compressible Navier-Stokes Equations [J]. J. Comput. Phys., 1997, 131:.
  • 4Arnold D N, Brezzi F, Cockburn B, and Marini L D. Unified analysis of discontinuous galerkinmethods for elliptic problems [J]. SIAM J. Numer. Anal., 2002, 39: 1749-1779.
  • 5Arnold D N, Brezzi F, Cockburn B, and Marini L D. Discontinuous Galerkin Methods for El-liptic Problems, in Discontinuous Galerkin Mehtods. Theory, Computation and Applications,B.Cockburn, G.E.Karniadakis, and C.-W. Shu, eds.,Lecture Notes in Comput. Sci. Engrg. 11,Springer-Verlag, New York, 2000, 89-101.
  • 6Antonietti P F, Buffa A, Perugia I. Discontinuous Galerkin approximation of the Laplace eigen-problems, Comput. Methods Appl. Mech. Engrg., 2005.
  • 7杨一都.用有限元亏量校正求特征值下界[J].工程数学学报,2006,23(1):99-106. 被引量:4
  • 8Brezis H. Analyse Fonctionnelle-Theorie et Applications, Masson, Paris, 1983.
  • 9Arnold D N. An interior penalty finite element method with discontinuous elements [J]. SIAM J.Numer. Anal., 1982, 19: 742-760.
  • 10Kato T. Perturbation Theory of Linear Operators, Springer-Verlag, 1966.

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部