期刊文献+

低碳Si-Mn系Q&P钢不同配分时间的热处理工艺 被引量:17

Heat treatment process of low carbon Si-Mn Q&P steel with different partitioning time
原文传递
导出
摘要 采用CCT-AY-Ⅱ热处理连退模拟机,研究了不同配分时间下,两相区退火温度淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用不同配分时间的两相区连续退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状或块状残留奥氏体;随配分时间的增加,钢的抗拉强度和残留奥氏体含量呈下降趋势,伸长率和强塑积呈上升趋势;当配分时间为300 s时,试验钢抗拉强度达到1000 MPa,其伸长率为27.3%,强塑积高达27 300 MPa.%。 Effect of the different partitioning time heat treatment process on microstructure and mechanical properties of the low carbon Si- Mn Q&P steel were investigated by using a thermo-mechanical simulator CCT-AY-lI. The results show that lath martensite, ferrite and retained austenite are obtained in the tested steel. With the partitioning time going up, the tensile strength and retained austenite of the tested steel decrease, while the elongation and TS ~ TEL ( tensile strength × total elongation ) of the tested steel increase. When the partition time is 300 s, the tested steel exhibits high ultimate tensile strength exceeding 1000 MPa and fine elongation of 27.3% and TS x TEL of 27 300 MPa · %.
出处 《金属热处理》 CAS CSCD 北大核心 2012年第11期95-99,共5页 Heat Treatment of Metals
关键词 Q&P工艺 板条马氏体 残留奥氏体 TRIP效应 配分时间 quenching and partitioning(Q&P) process lath martensite retained austenite TRIP effect partitioning time
  • 相关文献

参考文献9

  • 1Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning in to austenite after martensite transformation [ J ]. Acta Mater, 2003, 51 : 2611-2622.
  • 2Gerdemann F L H, Speer J G, Maflock D K. Microstructure and hardness of steel grade 9260 heat-treated by the Quenching and Partitioning (Q&P) process [ C ]//Materials Science and Technology, New Orleans, LA, USA: Association for Iron and Steel Technology, 2004 : 439-449.
  • 3Speer J G, Edmonds D V, Rizzo F C. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[ J]. Current Opinion in Solid State & Materials Science, 2004, 8(3) : 219-237.
  • 4Santofimia M J, Zhao L, Petrov R, et al. Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel [J]. Materials Characterization, 2008, 59 ( 12 ) : 1758-1764.
  • 5Lason J A, Jatczak C F, Shin S W. Retained austenite and its measurement by X-ray diffraction [ M ]. Warrendale: Society of Automotive Engineers, 1980.
  • 6李绍宏,邓黎辉,谢殷子,吴晓春.高碳高合金马氏体钢回火过程连续性转变的内耗行为研究[J].钢铁研究学报,2011,23(4):37-41. 被引量:7
  • 7Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite-A novel steel heat treatment [ J ]. Materials Science and Engineering: A, 2006, 438-440 : 25-34.
  • 8Borgenstam A, Hoglund L, Agren J, et al. DICTRA, a tool for simulation of diffusional transformations in alloys [ J ]. Journal of phase equilibria, 2000, 21(3): 269-280.
  • 9Narasimha R B V, Thomas G. Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness [ J ]. Metallurgical Transactions, 1980, 11A ( 3 ) : 441-457.

二级参考文献20

  • 1葛庭燧.固体内耗理论基础-晶界弛豫与晶界结构[M].北京科学出版社,2000.
  • 2Zener C. Elasticity and Anelasticity of Metals [M]. The Univ of Chicago Press, 1948.
  • 3Zener C. Anelasticity of Metals [M]. II Nuovo Cimento (1955 1965), 1958: 7.
  • 4Nowick A S, Berry B S. Anelastic Relaxtion in Crystalline So lids [M]. Academic Press, New York, 1972: 176.
  • 5Nowick A S. Internal Friction in Metals [J]. Progress in Metal Physics, 1953 : 41.
  • 6Golovin I S, Neuhauser H, Riviere A, et al. Anelasticity of Fe-AI Alloys, Revisited [J]. Intermetallics,2004,12(2) : 125.
  • 7Bevington P R. Data Reduction and Error Analysis, or the Physical Science [M]. New York, McGraw Hill, 1969 : 236.
  • 8Weft C, Marx I. Aeta Metallurgicaet Materialia [J]. 1953: 1113.
  • 9Koiwa M. A Note on Dr J L Snoek [J]. Mater Sci Eng,2004 370A(1/2):9.
  • 10Koiwa M, Numakura H. The Snoek Effect in Ternary BCC Alloys [J]. A review. Sol St Phen,2006,11:537.

共引文献6

同被引文献125

引证文献17

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部