期刊文献+

不同喷孔夹角的直喷柴油机涡流室燃烧系统性能分析 被引量:3

Influence of Nozzle Hole Cone Angle on Swirl Chamber Combustion System in Direct Injection Diesel
下载PDF
导出
摘要 为改善燃烧室内喷雾的空间分布,增强气流运动,促进油气混合,基于前期研究提出的新型直喷柴油机涡流室燃烧系统,对146°、150°、154°喷孔夹角的3种不同喷油嘴在燃烧室内的喷雾、混合气形成与燃烧过程进行了数值模拟。结果表明:从燃空当量比总体分布来看,采用146°喷孔夹角时混合气最均匀。燃烧涡流和逆挤流对速燃期的燃烧室内温度分布有较大的影响。154°喷孔夹角的NO排放量最低,而146°喷孔夹角的碳烟排放量最低。综合来看,150°喷孔夹角有较好的排放性能。 In order to improve the particle spatial distribution, promote the mixing of oil and gas, and enhance airflow movement in a combustion chamber, a swirl chamber combustion system in direct injection diesel was investigated. The mixture formation and combustion progress in the combustion chamber were simulated, including different nozzle hole cone angles with 146°, 150° and 154°. The results showed that in view of the fuel/air equivalence ratio distribution, the uniformity of mixture on nozzle hole cone angle of 146°was better than others. The combustion swirl and anti-squish swirl have effect on temperature distribution in the combustion chamber. NO emission was lowest with nozzle hole cone angle of 154°, while soot emission was lowest with nozzle hole cone angle of 146°. The emission performance was better than others with nozzle hole cone angle of 150°.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2012年第11期15-20,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(51106065) 江苏省高校自然科学基金资助项目(11KJB470006)
关键词 直喷式柴油机 涡流燃烧室 喷孔夹角 数值模拟 Direct injection diesel, Swirl combustion chamber, Nozzle hole cone angle, Numerical simulation
  • 相关文献

参考文献7

二级参考文献27

共引文献30

同被引文献26

  • 1高珊,曲伟,姚伟.喷雾冷却中液滴冲击壁面的流动和换热[J].工程热物理学报,2007,28(z1):221-224. 被引量:17
  • 2吴小江.喷油器参数对柴油机性能的影响分析[J].江苏理工大学学报(自然科学版),1995,16(6):22-26. 被引量:3
  • 3周松,王银燕,明平剑等.内燃机工作过程仿真技术[M].北京:北京航空航天大学出版社,2012:140-142.
  • 4Moreira A L N, Moita A S, Panao M R. Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? [ J]. Progress in Energy and Combustion Science, 2010, 36(5) : 554 -580.
  • 5Tabbara H, Gu S. Modelling of impingement phenomena for molten metallic droplets with low to high velocities[ J]. International Journal of Heat and Mass Transfer, 2012,55 (7) : 2081 - 2086.
  • 6Wang M J, Lin F H, Hung Y L, et al. Dynamic behaviors of droplet impact and spreading: water on five different substrates[ J]. Langmuir, 2009, 25 (12): 6772- 6780.
  • 7Bhardwaj R,Longtin J P, Attinger D. Interracial temperature measurements, high-speed visualization and finite element simulations of droplet impact and evaporation on a solid surface [ J ]. International Journal of Heat and Mass Transfer, 2010, 53 (19) : 3733 -3744.
  • 8Tsai P, Pacheco S, Pirat C, et al. Drop impact upon micro-and nanostructured superhydrophobic surfaces[ J]. Langmuir, 2009, 25(20) : 12293 - 12298.
  • 9Chandra S, Avedisian C T. On the collision of a droplet with a solid surface[ J]. Proceedings of the Royal Society of London. Series A : Mathematical and Physical Sciences, 1991, 432 (1884) : 13 - 41.
  • 10Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [ J]. Journal of Computational Physics, 1981, 39(1): 201 -225.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部