期刊文献+

基于压电阻抗技术的奥氏体不锈钢力学损伤定量监测 被引量:2

Quantitative Monitoring for Mechanical Damage of Austenitic Stainless Steel Based on Electro-mechanical Impedance Technique
原文传递
导出
摘要 采用压电阻抗(Electro-mechanical impedance,EMI)技术对奥氏体不锈钢在拉伸过程中的力学损伤进行了定量监测实验研究。选择不同损伤状态下阻抗谱谐振峰频率偏移量△f及均方根偏差(Root-mean-square deviation,RMSD)值作为损伤识别指数,结果表明:在试样弹性变形阶段,△f和RMSD值很小,并且在加载过程中基本保持不变或小有波动;试样发生塑性变形以后,二者均明显增加,其中,△f值由0.05kHz随加载应力逐渐增加至1.65kHz时试样发生断裂,而RMSD由1.3%增大至17.6%后逐渐减小。文中对这种差别出现的原因及两参数各自的特点进行了讨论。显微分析结果证实材料弹塑性转变过程中两参数的变化与试样微观损伤具有很好的对应性,表明利用压电阻抗技术监测和评价核电管道用奥氏体不锈钢的力学损伤具有可行性。 Mechanical damage of austenitic stainless steel used in nuclear power plant piping system and produced in tensile procedure was quantitavely monitored by EMI(Electro-mechanical impedance) technique.The resonance peak frequency shift in impedance spectrum △f and RMSD(Root-mean-square deviation) of impedance signal in different damage state were selected to compare with that in the primary state and used as damage identification indexes.It is found that both △f and RMSD can be regarded as the characteristic functions of mechanical damage.In the elastic deformation stage,the values of △f and RMSD are quite small and basiclly unchanged or small fluctuated during loading process.After entering the plastic deformation,both △f and RMSD begin to increase rapidly.The value of △f has an approximately linear relationship with the nominal tensile stress,increasing from 0.05 to 1.65 kHz till the final failure.RMSD,however,increases first from 1.3% to the maximam value 17.6%,then decreases gradually.The reason for difference explanation and the respective characteristcs of two indexes were discussed.Microscopic analysis results comfirmed that the evolution of △f and RMSD during elastic-plastic transition of austenitic stainless steel presents a strong correspondance with the microstural damage,which demonstrates the feasibility of future application of EMI in mechaniacal damage inspection and evaluation of nuclear power plant piping system.
出处 《实验力学》 CSCD 北大核心 2012年第5期601-606,共6页 Journal of Experimental Mechanics
基金 国家重点基础研究发展计划973项目(2009CB724305) 中央高校基本科研业务费专项资金资助(DUT11RC(3)69)
关键词 奥氏体不锈钢 拉伸 力学损伤 结构健康监测 压电阻抗 austenitic stainless steel tensile mechanical damage structural health monitoring electro-mechanical impedance
  • 相关文献

参考文献10

  • 1杨文斗.反应堆材料学[M].北京:原子能出版社,2006:195-202.
  • 2IAEA-TECDOC-1361. Assessment and management of ageing of major nuclear power plant components important to safety primary piping in PWRs[R]. 2003: Vienna.
  • 3Anderson M T, Crawford S L, Cumblidge S E, et al. Assessment of crack detection in heavy-walled cast stainless steel piping welds using advanced low-frequency ultrasonic methods[RJ. 2007: Richland.
  • 4焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展[J].防灾减灾工程学报,2006,26(1):102-108. 被引量:23
  • 5Giurgiutiu V, Reynolds A, Rogers C A Experimental investigation of ElM impedance health monitoring for spot?welded structural joints[JJ. Journal of Intelligent Material Systems and Structures, 1999, 10(10): 802-812.
  • 6Park S, Chang H, Kim J W, et al. Wireless structural health monitoring and early-stage damage detection using piezoelectric iI?pedance sensorsl C]. Honolulu, ASCE, 2010: 3853-3862.
  • 7Li ji-cheng , Luo Zhong-bing , Lin Li , et al. Quantitative health monitoring of fatigue crack initiation and propagation in aluminum specimen based on electro-mechanical impedance technique[JJ. Insight, 2012, 54 (5): 267-271.
  • 8Giurgiutiu V, Rogers C A Recent advancements in the electro-mechanical (ElM) impedance method for structural health monitoring and NDE[C]. San Diego, SPIE, 1998:536 - 547.
  • 9Giurgiutiu V, Zagrai A N. Embedded self-sensing piezoelectric active sensors for on-line structural identification [JJ. Journal of Vibration and Acoustics, 2002, 124: 116-125.
  • 10Courtney T H. Mechanical behavior of materialsj M]. Beijing: China Machine Press, 2004.

二级参考文献31

  • 1杨大智.智能材料与智能结构[M].天津:天津大学出版社,2000..
  • 2Victor Giurgiutiu,Anddrei N Zagrai.Embedded selfsensing piezoelectric active sensors for on-line structural identification [J].Transactions of the ASME,2002,(124):116-125
  • 3Seeley,CE,Chattopadhyay A.Experimental investigation of composite beams with piezoelectric actuation and debonding[J].Smart materials and Structures,1998,(7):502-511
  • 4Seeley,CE,Chattopadhyay A.Modeling of adaptive composites including debonding [J].International Journal of Solids and Structures,1999,(36):1823-1843
  • 5Tong LY,Sun DC,Atluri SN.Sensing and actuating behaviours of piezoelectric layers with debonding in smart beams [J].Smart Materials and Structures,2001,(10) :713-723
  • 6Xu YG,Liu GR.A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches[J].Journal of Intelligent Material Systems and Structures,2002,(13):389-396
  • 7Zhou S,Liang C,Rogers CA.Integration and design of piezoceramic elements in intelligent structures[J].J.Intell.Mater.Syst.Struct.,1995,6(6):733-742
  • 8Bhalla S,Soh CK.Structural health monitoring by piezo-impedance transducers Ⅰ:modeling[J].Journal of Aerospace Engineering,2004,17(4):154-165
  • 9C K Soh,K K-H Tseng,S Bhalla,et al.Performance of smart piezoceramic patches in health monitoring of a RC bridge[J].Smart Material and Strucure,2000,(9):533-542
  • 10Victor Giurgiutiu,Anddrei N Zagrai,Craig A Rogers.Experimental investigation of E/M impedance health monitoring for spot-welded structural joints [J].Journal of Intelligent Material Systems and Structures,1999,(10):802-812

共引文献32

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部