期刊文献+

最大空圆约束下的最邻近计算方法 被引量:2

Nearest neighbor searching algorithm with largest empty circle constraint
原文传递
导出
摘要 移动目标的最邻近查询是位置服务的重要内容之一。本文针对地理目标分布不均的情况,将离散点集的最大空圆参数引入到最邻近查询中,提出了最大空圆约束下的k-D树最邻近查询算法。通过实验证明该算法可以有效地减少节点访问次数,减少距离计算次数,从而提高最邻近的查询效率。进而将该算法应用于移动目标的k阶邻近查询中,可以有效地减少移动点在三角网中的定位次数,改善k阶邻近的查询效率。 The nearest neighbor queries of moving objects are of important service terms in LBS (Location-Based Services ) field. But the uneven distribution of geographical objects greatly deteriorates the searching efficiency. This paper proposed an optimization nearest neighbor searching algorithm based on k-D tree with the largest empty circle constraint of discrete point set. The experiment showed the new algorithm could be better comparing with non-constraint algorithm in searching efficiency, because it effectively reduced the number of visiting nodes also the number of calculating distance. Furthermore, this algorithm could be used in searching korder neighbor objects of moving objects to reduce the positioning number in the triangle network.
出处 《测绘科学》 CSCD 北大核心 2012年第6期157-159,共3页 Science of Surveying and Mapping
基金 国家自然科学基金项目(40971238 40971213 41171310)
关键词 移动目标 最大空圆 K-D树 最邻近查询 k阶邻近查询 moving object largest empty circle k-D tree nearest neighbor k-order neighbor
  • 相关文献

参考文献11

  • 1WOLFSON O, XU B, CHAMBERLAIN S,JIANG L Moving Object Databases :Issues and Solutions [ C ]// RAFANELLI M,JARKE M. The Proceedings of the 10th Int 1 Conference on Scientific and Statistical Database Management. Ca//forn/a: IEEE Computer Society, 1998 : 111-122.
  • 2ARYA S, MOUNT D M, NETANYAHU N S, SILVERMAN R, WU A Y. An Optimal Algorithm for Approximate Nea- rest Neighbor Searching in Fixed Dimensions [ J ]. Journal of the ACM,1998,45(6) :891-923.
  • 3Sagawa R, Masuda T, Ikeuchi K. Effective Nearest Neigh- bor Search for Aligning and Merging Range Images [ C ]//Proceedings of. Fourth International Conference on 3-D Digital Imaging and Modeling(3DIM 03 ). California : IEEE Computer Society,2003:79-86.
  • 4ROUSSOPOULOS N, KELLEY S AND VINCENT F. Nearest Neighbor Queries [ C l// Proceedings of the International Conference On Management of Data. New York:ACM, 1995: 71-79.
  • 5BENTLEY J k Multidimensional Binary Search Trees Used for Associative Searching [ J ]. Communications of the Asso- ciation for Computing Machinery,1975,18(9) :509-517.
  • 6阎超德,赵学胜.GIS空间索引方法述评[J].地理与地理信息科学,2004,20(4):23-26. 被引量:43
  • 7SONG Z, ROUSSOPOULOS N. K-Nearest Neighbor Search for Moving Query Point [ C ]// Jensen CS, Schneider M, Seeger B,Tsotras V. The Proceedings of 7th International Symposium on Advances in Spatial and Temporal Databas- es. London : Springer-Verlag,2001:79-96.
  • 8CHEN Jun, ZHAO Renliang, LI Zhilin. Voronoi-Based k- order Neighbour Relations for Spatial Analysis [ J ]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004,59(1-2) :60-72.
  • 9杜晓初,郭庆胜.基于Delaunay三角网的空间邻近关系推理[J].测绘科学,2004,29(6):65-67. 被引量:12
  • 10吴立新 史文中.地理信息系统原理与算法[M].北京:科学出版社,2000..

二级参考文献24

  • 1[3]BENTLEY J L. Multidimensional binary search trees used for associated searching[J]. Communications of the Association for Computing Machinery,1975,18(9):509-517.
  • 2[4]ROBINSON J T. The K-D-B Tree:a search structure for large multidimensional dynamic indexes[A]. Proceeding of ACM SIGMOD International Conference on Management of Data[C].1981.10-18.
  • 3[5]FINKEL R A,BENTLEY J L. Quadtrees:a data structure for retrieval on composite keys[J].Acta Inf,1974,4(1):1-9.
  • 4[6]SAMET H.The quadtree and related hierarchical data structures[J].Computing Surveys,1984,16(2):187-260.
  • 5[10]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2000.22-27.
  • 6[12]CUTTMAN A. R-Trees:a dynamic index structure for spatial searching[A].Proceeding of ACM-SIGMOD[C].1984.547-557.
  • 7[16]SELLIS T, ROUSSOPOULOS N, FALOUTSOS C. The R+-Tree:a dynamic index for multi-dimensional objects[A]. The 13th Int. Conf. on very Large Databases,Brighton,U.K[C].1987.
  • 8[17]BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-Tree: an efficient and robust access method for points and rectangles[A]. ACM SIGMOD, Atlantic, USA[C].1990.
  • 9[18]ZHAO X S, JUN C, ZHAO R L. Dynamic spatial indexing model based on Voronoi[A].Proceedings of the International Symposium on Digital Earth Science Press[C].1999.832-837.
  • 10[5]LAWSON C L.Software for C surface interpolation[A].RICE J R.Mathematical Software Ⅲ[C].New York:Academic Press,1977.161-194.

共引文献81

同被引文献58

  • 1张福浩,仇阿根,陶坤旺.一种基于MOST优化的移动目标空间模型[J].测绘通报,2009(8):21-23. 被引量:2
  • 2柳林,张继贤,唐新明,李万武.LBS体系结构及关键技术的研究[J].测绘科学,2007,32(5):144-146. 被引量:31
  • 3陈定造.空间离散点集Delaunay三角剖分的算法优化及实现[D].广州:广东工业大学,2008.
  • 4BLANDFORD D K, BLELLOCH E G, KADOW C. Engi- neering a compact parallel Delaunay algorithm in 3D[C]. Proceedings of the 22th ACM Symposium on Computational Geometry, New York: ACM, 2006:292-300.
  • 5Li Yanbo, Zhang Tianchi, Zhang Jing, et al. Almost-Good delaunay tetrahedron modeling for surgery simulation [C]. Proceedings of 2010 Second International Asia Symposium on Intelligent Interaction and Affective Computing and 2010 Second International Conference on Innovation Management (ASIA-ICIM 2010), Wuhan:ASIA-ICIM, 2010:611-621.
  • 6CAVENDISH J C, FIELD D A, FREY W H. An ap- proach to automatic three-dimensional finite element mesh generation[J ]. International Journal for Numerical Methods in Engineering, 1985,21 (2) :329-347.
  • 7LEE D T, SCHACHTER B J. Two algorithms for con- structing a delaunay triangulation[J]. International Journal of Computer and Information Sciences, 1980,9 (3):219- 242.
  • 8崔凌国.约束Delaunay四面体剖分及其相关算法的研究[D].西安:西北工业大学,2006.
  • 9SHAMOS M I, HOEY D. Closest-point problems [C]. Proceedings of the 16th Annual Symposium on the Founda- tions of Computer Science(FOCS), 1975 : 151-162.
  • 10SHAMOS M I. Geometric complexity[C]. Proceedings of the Seventh ACM Symposium on the Theory of Computing, 1975.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部