期刊文献+

锰掺杂硫化锌量子点室温磷光检测铅离子 被引量:11

Determination of Lead Ion Based on Quenching of Room Temperature Phosphorescence of Mn-doped ZnS Quantum Dots
下载PDF
导出
摘要 采用锰掺杂硫化锌量子点室温磷光(RTP)探针,基于Pb^(2 1)对其磷光的猝灭现象进行选择性测定,考察了量子点溶液浓度、缓冲液体系及浓度、反应时间、干扰物质等多种因素影响,在最优条件下,即25μmol/L量子点溶液在Tris-HCl(10 mmol/L,pH 7.4)缓冲液中,反应时间为2 min时,检测Pb^(2-)-的线性范围为0 25~1000μmol/L,检出限为0.04μmol/L,方法的精密度和准确度良好。本方法简单、快速、灵敏度和选择性较好,线性范围较宽,可用于96孔板进行高通量检测,并成功应用于生物样品中Pb^(2-)的选择性检测,在稀释5倍人血浆中检测Pb^(2-)的线性范围为5~1000μmol/L,检出限为0.48μmol/L。 Room temperature phosphorescence(RTP) property of Mn-doped ZnS quantum dots (QDs) was explored to develop a novel method for selective detection of lead cation.The influence factors such as buffer kinds and their concentration,the concentration of Mn-doped ZnS QDs solution, reaction time and coexisting substances were studied.It was found that under optimized conditions, i.e.10 mmol/L Tris-HCl buffer at pH 7.4 and 2 min reaction time,the relative RTP intensity of the Mn-doped ZnS QDs was quenched linearly by lead cation in the concentration range from 0.25 to 1000μmol/L,and the limit of detection was 0.04μmol/L(8.3μg Pb/L).This method was also applied to measure lead cation in biosamples using a high-throughput 96 well plate with a wide linear range,simpleness,rapidness,high sensitivity and selectivity,and cost effectiveness.The RTP was quenched linearly by lead cation in human plasma in the concentration range from 5 to 1000(imol/L, and the limit of detection was 0.48μmol/L(Pb 99μg/L),respectively.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2012年第11期1680-1685,共6页 Chinese Journal of Analytical Chemistry
基金 "重大新药创制"国家科技重大专项(Nos.2009ZX09301-002 2010ZXJ0900X-003-002)资助项目
关键词 量子点 锰掺杂硫化锌 磷光 铅离子 Quantum dots Manganese-doped zinc sulfide Phosphorescence Lead cation
  • 相关文献

参考文献16

  • 1LanG, Lin Y, Huang Y, Chang H. Mater. Chem. , 2007, 17(25): 2661-2666.
  • 2Liu W. J. Biosci. Bioeng. , 2006, 102(1) : 1-7.
  • 3谢海燕,庞代文.Ⅱ-Ⅵ型量子点制备及其在生物检测中应用研究进展[J].分析化学,2004,32(8):1099-1103. 被引量:39
  • 4梁佳然,钟文英,于俊生.量子点荧光探针在定量分析中的应用[J].化学进展,2008,20(9):1385-1390. 被引量:21
  • 5Rahul T, Chuan C, SneeP T. Nano. Lett., 2007, 7(11): 3429- 3432.
  • 6He Y, Wang H, YanX. Anal. Chem., 2008, 80(10): 3832 -3837.
  • 7He Y, Wang H, Yan X. Chem. Eur. J. , 2009, 15(22): 5436-5440.
  • 8Wang H, HeY, JiT, YanX. Anal. Chem. , 2009, 81(4): 1615 -1621.
  • 9Wang H, LiY, WuY, HeY, YanX. Chem. Eur. J., 2010, 16(43): 12988 -12994.
  • 10WuP, He Y, Wang H, Yan X. Anal. Chem., 2010, 82(4):1427-1433.

二级参考文献121

共引文献79

同被引文献326

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部