期刊文献+

二部双圈图的拉普拉斯系数 被引量:2

On Laplacian Coefficients of Bipartite Bicyclic Graphs
下载PDF
导出
摘要 研究二部双圈图的Laplacian系数,将二部双圈图分为三类,利用α-变换及图的Laplacian特征多项式的计算,得到每一分类中具有较小拉普拉斯系数的图,然后对其Laplacian特征多项式进行比较,得到了阶数固定的二部双圈图中具有最小Laplacian系数的图. The Laplacian coefficients of bipartite bicyclic graphs were investigated.All the bipartite bicyclic graphs were classified into three categories.The graph with the smallest k-th coefficient of each category was obtained by using α-transform and Laplacian characteristic polynominal of the graph,and then the graph with the smallest k-th coefficient among all bipartite bicyclic graphs of order n was obtained by using Laplacian characteristic polynominal of the graph.
出处 《上海理工大学学报》 CAS 北大核心 2012年第5期481-486,共6页 Journal of University of Shanghai For Science and Technology
关键词 二部双圈图 特征多项式 拉普拉斯系数 bipartite bicyclic graphs characteristic polynominal Laplacian coefficients
  • 相关文献

参考文献8

  • 1Kelmans A K, Chelnokov V M. A certain polynomial of a graph and graphs with extremal number of trees[J]. J Combin Theory, Ser B, 1974,16(3) :197 - 214.
  • 2Gutman I, Pavlovic' L. On the coefficients of the laplacian characteristic polynomial of trees [J].Bulletin Acad Serbe Sci Arts, 2003,127 (28) : 31 - 40.
  • 3Mohar B. On the Laplacian coeffcients of acyclic graphs[J].Linear Algebra Applications, 2007,422 (2/ 3) :736 - 741.
  • 4Mohar B. Problems: laplacian coeffcients of trees[EB/ OL]. [2006-11-271. http.//www, fmf. unilj, si/mohar/.
  • 5Ilic' A. On the ordering of trees by the Laplacian coeffcients[J]. Linear Algebra and its Applications, 2009,431 (11) : 2203 - 2212.
  • 6Stevanovic' D, Ilic' A. On the laplacian coeffcients of unicyclic graphs [J]. Linear Algebra and its Appli- cations, 2009,430 (8/9) : 2290 - 2300.
  • 7He C X, Shan H Y. On the laplacian coeffcients of bicyclic graphs [J]. Discrete Mathematics, 2010, 310 (23) :3404- 3412.
  • 8He C X,Shao J Y, He J L. On the Laplacian spectral radii of bicyclic graphs [J]. Discrete Mathematics, 2008,308 (24) : 5981 - 5995.

同被引文献17

  • 1Cvetkovi D,Rowlinson P,Simic S.Signless Laplacian of finite graphs[J].Linear Algebra and its Applications,2007,423(1):155-171.
  • 2Wang J F,Huang Q H.Some results on the signless Laplacians of graphs[J].Applied Mathematics Letters,2010,23 (9):1045-1049.
  • 3MirzakhahM,Kiani D.Some results on signless Laplacian coefficients of graphs[J].Linear Algebra and its Applications,2012,437(9):2243-2251.
  • 4Oliveira C S,Maia de Abreu N M,Jurkiewicz S.The characteristic polynomial of the Laplacian of graphs in (a,b)-linear classes[J].Linear Algebra and its Applications,2002,356 (1/2/3):113-121.
  • 5He C X,Shan H Y.On the Laplacian coefficients of bicyclic graphs[J].Discrete Mathematics,2010,310 (23):3404-3412.
  • 6Mohar B.On the Laplacian coefficients of acyclic graphs[J].Linear Algebra and its Applicatons,2007,422 (2/3):736-741.
  • 7Ilic A,Ilic M.Laplacian coefficients of trees with given number of leaves or vertices of degree two[J].Linear Algebra and its Applications,2009,431(11):2195-2202.
  • 8Stevanovic D,Ilic A.On the Lapladan coefcients of unicyclic graphs[J].Linear Algebra and its Applications,2009,430 (8/9):2290-2300.
  • 9Schwenk A J. Computing the characteristic polynomial of a graph[J]. Lecture Notes in Mathematics, 1974, 406 : 153 - 172.
  • 10Cardoso D M,de Freitas M A A, Martins E A, et al. Spectra of graphs obtained by a generalization of the join graph operation[J]. Discrete Mathematics, 2013, 313(5) :733- 741.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部