期刊文献+

基于改进动态等距离映射的非线性动态故障诊断方法

Nonlinear Dynamic Fault Diagnosis Method Based on Improved Isometric Mapping
下载PDF
导出
摘要 分析动态等距离映射算法,针对数据稀疏分布造成短路边的缺点,运用主成分分析法进行可视化一维主元提取,近似确定高维采样点的分布情况,自适应获取采样点的近邻参数.其次,采用流形距离量度代替欧氏距离进一步得到测地线距离,提取训练样本的子流形特征,并运用标准化监控统计量实施过程监控和故障检测.最后,设立子流形综合相似度指标,对故障数据进行模式匹配.TE(Tennessee Eastman)过程的仿真结果表明:所提出的方法可以更为有效地检测到故障发生,并进一步对发生的故障进行识别. DISOMAP(dynamic isometric mapping) algorithm is analyzed in this paper.According to the shortcomings of short edge caused by data sparse distribution,PCA(principal component analysis) algorithm was used to extract one-dimensional visualization principal component,determining the distribution of sampling points approximately,acquiring the neighbor parameter of sampling point adaptively.Secondly,manifold distance instead of euclidean distance was defined to calculate geodesic distance furtherly.So the submanifold character could be extracted from the training sample.Standardized monitoring statistics were used in process monitoring application and fault detection.Finally,the similarity index was used for pattern matching in the sub-manifold fault database.Simulation results of TE(Tennessee Eastman) process show that improved dynamic isometric mapping(IDISOMAP)-based method is more effective for fault detection and fault identification.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2012年第6期621-626,共6页 Journal of Huaqiao University(Natural Science)
基金 山东省自然科学基金资助项目(ZR2011FM014) 中央高校基本科研业务费专项资金资助项目(10CX04046A)
关键词 动态等距离映射 子流形 非线性过程 故障诊断 主成分分析法 dynamic isometric mapping sub manifold non-linear process fault diagnosis principal component analysis
  • 相关文献

参考文献10

  • 1VENKATASUBRAMANIAN V, RENGASWAMY R, KAVURI S N, et al. A review of process fault detection anddiagnosis: PartⅢ : Process history based methods[J]. Computers and Chemical Engineering, 2003,27(3) :327-346.
  • 2VAN DER MAATEN L J P,POSTMA E O,VAN DEN HERIK H J. Dimensionality reduction: A comparative re- view[J]. Computer and Information Science, 2008,71 (1) : 2596-2603.
  • 3SHAO Ji-dong,RONG Gang. Nonlinear process monitoring based on maximum variance unfolding projeetions[J]. Expert Systems with Applications,2009,36(8):11332-11340.
  • 4ZHANG Mu-guang, GE Zhi-qiang, SONG Zhi-huan, et al. Global-local structure analysis model and its application for fault detection and identification[J]. Industrial & Engineering Chemistry Research, 2011,50(11) : 6837-6848.
  • 5WONG W K, ZHAO H T. Supervised optimal locality preserving proiection[J]. Pattern Recognition, 2012,45 (1) : 186-197.
  • 6张妮,田学民.基于等距离映射的非线性动态故障检测方法[J].上海交通大学学报,2011,45(8):1202-1206. 被引量:13
  • 7TENENBAUM J B, DE SILVA V, LANDFORD J C. A global geometric framework of nonlinear dimensionality re- duction[J]. Science, 2000,290(5500) :2319-2323.
  • 8BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: A geometric framework for learning from la- beled and unlabeled examples[J]. Journal of Machine Learning Research, 2006,7.2399-2434.
  • 9KU W, STORER R H, GERGAKIS C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1995,30(1) :179-196.
  • 10DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers and Chemical Engineer- ing, 1993,17(3) :245-255.

二级参考文献10

  • 1邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 2Russell L H, Braatz R D. Fault detection and diagnosis in industrial system[M]. London: Springer Verlag Press, 2001.
  • 3Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1) : 223-224.
  • 4Li Min, Xu Jinwu. Multiple manifolds analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2500 2509.
  • 5Shao Ji-dong, Rong Gang. Nonlinear process monito ring based on maximum variance unfolding projections [J]. Expert Systems with Applications, 2009, 36 (8) : 11332-11340.
  • 6Elizaveta Levina, Ann Arbor Mi. Maximum likelihood estimation of intrinsic dimension[J]. Advances in Neural Information Processing Systems, 2004, 17 :777-784.
  • 7Tenenbaum J B, Vin de Silva, Landford J C. A glob al geometric framework of nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 8Downs J J, Vogel E F. A plant-wide industrial process control problem[J].Computers and ChemicalEngineering, 1993, 17(3): 245-255.
  • 9张伟,周维佳,李斌.基于分维LLE和Fisher判别的故障诊断方法[J].仪器仪表学报,2010,31(2):325-333. 被引量:13
  • 10魏宪,李元祥,赵海涛,庹红娅,许鹏.基于改进ISOMAP算法的图像分类[J].上海交通大学学报,2010,44(7):911-915. 被引量:3

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部