期刊文献+

具有时滞的神经网络模型的分支分析 被引量:2

Bifurcation Analysis of a Delayed Neural Networks
下载PDF
导出
摘要 研究一类具有时滞的神经网络模型.通过分析系统的特征方程及考虑不同的时滞对系统动力学行为的影响,得到系统的平衡点稳定及Hopf分支产生的条件.数值模拟验证了所得理论分析的结果的正确性,补充了前人的研究成果. In this paper,a delayed neural networks model is investigated.By analyzing the associated characteristic equation and studying how the different delays affect the dynamical behavior of system,the condition of stability of equilibrium and the existence of Hopf bifurcation are obtained.Numerical simulations are carried out to justify the theoretical findings.Our result is a good complement to the earlier publications.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2012年第6期694-698,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(60902044) 贵州省软科学基金资助项目(黔科合R字[2011]LKC2030) 贵州省科学技术基金资助项目(黔科合J字[2012]2011) 贵州财经大学博士科研启动项目(2010年度)
关键词 神经网络 稳定性 HOPF分支 时滞 neural networks stability Hopf bifurcation delay
  • 相关文献

参考文献13

  • 1HOPFIELD J. Neurons with graded response have collective computional properties like those of two-state neurons [J]. Proceedings of the National Academy of Sciences USA, 1984,81(10) :3088-3092.
  • 2XU Chang-jin,TANG Xianhua, LIAO Mao-xirL Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays[J]. Neural Networks, 2010,23(7),872-880.
  • 3XU Chang-jin, HE Xiao-fei, LI Pei-luan. Global existence of periodic solutions in a six-neuron BAM neural network model with discrete delays[J]. Neurocomputing,2011,74(17):3257-3267.
  • 4XU Chang-jin, TANG Xianhua, LIAO Mao-xin Stability and bifurcation analysis of a six-neuron BAM neural net- work model with discrete delays[J]. Neurocomputing, 2011,74(5) : 689-707.
  • 5ZHANG Zheng-qiu, YANG Yan, HUANG Ye-sheng. Global exponential stability of interval general BAM neural networks with reaction-diffusion terms and multiple time-varying delays[J]. Neural Networks, 2011,24 (5) : 457- 465.
  • 6GUO Shang-jiang, YI_IAN Yuan. Delay-induced primary rhythmic behavior in a two-layer neural network[J]. Neural Networks, 2011,24 (1) : 65-74.
  • 7GUO Shang-jiang. Equivariant Hopf bifurcation for functional differential equations of mixed type[J]. Applied Mathematics Letters,2011,24(5) :724-730.
  • 8刘云辉,李钟慎.改进型模糊神经网络模型的构造[J].华侨大学学报(自然科学版),2010,31(3):256-259. 被引量:5
  • 9HUANG Chuang-xia, HE Yi-gang, HUANG Li-hong, et al. Hopf bifurcation analysis of two neurons with three delays[J]. Nonlinear Analysis: Real World Applications, 2007,8(3): 903-921.
  • 10YUAN Shao-liang,LI Xue-mei. Stability and bifurcation analysis of an annular delayed neural network with selfconnection [J]. Neurocomputing, 2010,73(16/17/18) : 9905-2912.

二级参考文献5

共引文献4

同被引文献10

  • 1唐长兵.一类具连续时滞二维神经网络模型的Hopf分支[J].曲阜师范大学学报(自然科学版),2007,33(1):54-58. 被引量:1
  • 2Hopfield J J.Neurons with graded response have collective computational properties like those of two-state neurons[J].Proceedings of the National Academy of Science USA,1984,81 (10):3088-3092.
  • 3A.Hajihosseini,G.R.R.Lamooki,B.Beheshti,F.Maleki,The Hopf bifurcation analysis on a time-delayed recurrent neural network in the frequency domain[J].Neurocomputing,2010,73 (4-6):991-1005.
  • 4S.Guo,Y.Yuan,Delay-induced primary rhythmic behavior in a two-layer neural network[J].Neural Networks,2011,24(1):65-74.
  • 5C.J.Xu,X.F.He.Stability and bifurcation analysis in a class of two-neuron networks with resonant bilinear terms[J].Abstract and Applied Analysis,vol.2011,Article ID 697630,21 pages,2011.
  • 6B.X.Wang,J.G.Jian.Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with distributed delays[J].Communications in Nonlinear Science and Numerical Simulation,2010,15 (2):189-204.
  • 7Hassard B.D,Kazarinoff N.D.Wan Y.H.Theory and Applications of Hopf Bifurcation[M].Cambridge University Press,Cambridge,1981.
  • 8毕殿杰,孙玉涛.一类两神经元时滞神经网络稳定性和Hopf分支[J].枣庄学院学报,2014,31(5):72-77. 被引量:4
  • 9宿娟,何志蓉.一维Hopfield神经网络模型的多稳态分析[J].四川大学学报(自然科学版),2016,53(2):260-264. 被引量:3
  • 10王莉芳.一类分数阶神经网络模型的稳定性与Hopf分支分析[J].数学的实践与认识,2017,47(4):217-224. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部