期刊文献+

电感耦合等离子体原子发射光谱法测定钛合金中铁、硅不同溶解方法比较研究 被引量:5

Comparison of two different dissolution methods for inductively coupled plasma atomic emission spectrometric determination of iron and silicon in titanium alloy
下载PDF
导出
摘要 考察了硫酸溶解和氢氟酸溶解两种钛合金的溶解方法。采用氢氟酸溶解试样,钛合金中的Fe和Si均可进行准确检测,而用硫酸溶解钛合金样品时,Si含量不能准确检测。进一步研究了硫酸溶解法中不同溶解温度对测量的影响,发现将电炉温度调至较高时,钛合金溶解速度较快,且对Fe的分析没有影响,因此用硫酸溶解钛合金时选择此种溶解方式进行Fe含量的分析。此外,系统考察了10余种不同牌号钛合金中基体元素和共存元素对Fe、Si分析谱线的光谱干扰情况,并进行了分析谱线的选择。Fe259.940nm、Fe238.204nm和Fe239.562nm三条谱线可作为钛合金中Fe元素的分析线;Si251.611nm则做为Si元素的分析谱线,但当钛合金中Mo含量大于1%时,制作校准曲线分析Si时需进行Mo元素含量匹配。硫酸溶解法Fe的检出限为0.089μg/mL,氢氟酸溶解法Fe和Si的方法检出限分别为0.016μg/mL和0.097μg/mL。 This report investigated two dissolving titanium alloy methods which were sulfuric acid dis solution method and hydrofluoric acid dissolution method. Fe and Si in titanium alloy could be deter mined accurately when the titanium alloy samples were dissolved by hydrofluoric acid dissolution method, and sulfuric acid dissolution method was not applied to Si element. After researching the influence of different dissolving temperature, the conclusion was obtained that high hotplate temperature was the best method for dissolving titanium alloys. Under such circumstance, titanium alloy could be dissolved rapidly, and there was no negative effect on the analysis of Feelement. Therefore, this dissolving method was selected when sulfuric acid was used in dissolving titanium alloys. Further more, the spectral interferences deriving from the basic element and coexistence elements in more than ten brands of titanium alloy in the determination of Fe, Si were investigated, and then analytical lines were selected. Fe 259.94nm, Fe 238.204nm, Fe 239.562nm and Si 251. 611nm were selected as analytical lines, but when content of Mo was above 1%, Mo element ought to be matched in calculating curve to analyze Si element. The detection limit of Fe of sulfuric acid dissolution method is 0.089 μg/mL, and the detection limit of Fe and Si of hydrofluoric acid dissolution method were 0. 016 mL and 0. 097 μg/mL, respectively.
出处 《冶金分析》 CAS CSCD 北大核心 2012年第10期30-36,共7页 Metallurgical Analysis
关键词 钛合金 溶解 电感耦合等离子体原子发射光谱 titanium alloy dissolution iron silicon inductively coupled plasma atomic emissionspectrometry (ICP-AES)
  • 相关文献

参考文献11

二级参考文献19

  • 1THOMPSON M 符斌等(译).ICP光谱分析指南[M].北京:冶金工业出版社,1991..
  • 2.HB 5297.10-84.中华人民共和国航空工业部标准.钛合金分析方法[S].北京:航空工业部第三○一研究所出版,1989.32-34..
  • 3.HB 5297.5-84.中华人民共和国航空工业部标准.钛合金分析方法[S].北京:航空工业部第三○一研究所出版,1989.17-19..
  • 4《光谱学与光谱分析》编辑部.光谱分析常用谱线表[M].北京,1985..
  • 5GB/T4698—1996.海绵钛、钛及钛合金化学分析方法.[S].,..
  • 6刘建国.钛合金中AI、Mn、Sn、Fe、Si的测定[J].冶金分析,1986,6(2):50-50.
  • 7美国PerkinElmer公司Optima系列ICP-AES培训手册[Z].
  • 8辛仁轩.离子体发射光谱分析[M].北京:化学工业出版社,2005,1-3.
  • 9冶金工业部科技情报产品标准研究所编.钛与钛合金[M].北京:冶金工业出版社.1972,23-24
  • 10庄稼,迟燕华,李亚杉,李志强.阳离子交换树脂富集、钪-钙-茜素红共显色分光光度法测定水中微量钪的研究[J].分析测试学报,1998,17(3):40-42. 被引量:5

共引文献60

同被引文献48

  • 1高秀丽.EDTA容量法测定锆钛砂矿中锆(铪)的含量[J].中国石油和化工标准与质量,2012,32(5):22-22. 被引量:3
  • 2晏文慧,刘秋华.连铸用锆质定径水口的氧化锆分析方法[J].耐火材料,1995,29(2):104-107. 被引量:4
  • 3张利军,陈传霞,刘岱松.磷酸——三价锰滴定法测定铝锰钛合金中锰量[J].冶金标准化与质量,2007,45(2):14-15. 被引量:1
  • 4吉昂,陶光仪,卓尚军.X射线荧光光谱分析[M].北京:科学出版社,2007.
  • 5岩石矿物分析编委会.岩石矿物分析:第4版[M]. 北京:地质出版社, 2011.
  • 6梁珏.X射线荧光光谱分析基础[M].北京:科学出版社,2003.
  • 7Kunimura S,Kawai J, Portable total X-ray fluores-cence spectrometer for ultra trace elemental determi-nation [J]. Advances in X-Ray Chemical Analysis,2010,41:29-43.
  • 8Kataoka Yoshiyuki, Kasai Kiyotaka, Kohno Hisayu-ki. Study of net intensity calculation method in X-Rayfluorescence analysis[J], Analysis Science, 1991 (7):513-516.
  • 9ASTM E539-11 Standard test method for analysis oftitanium alloys by X-ray fluorescence spectrometry[S].
  • 10ASTM E1622-1994 Standard practice for correctionof spectral line overlap in wavelength-dispersive X-ray spectrometry[S].

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部