期刊文献+

基于组合分类器的校园网入侵检测

Intrusion Detection of Campus Network Based on Combined Classifier
下载PDF
导出
摘要 为了增强校园网络的安全性,提出KPCA和BP神经网络相结合的组合分类器法构造入侵检测系统.先用KPCA对原始数据进行降维处理,而后用BP神经网络对新的数据进行分类检测.结果表明,该方法能有效地缩短检测时间,提高检测效率. To improve safety of campus network,an intrusion detection system is proposed by combined classifier which is combination of KPCA technology and BP Neural Network.First,KPCA technology is used to decrease the dimensions of raw data,and then the new data samples are classified by BP neural network.Results show that the method can shorten detection time and enhance detection rate.
作者 周宓
出处 《新乡学院学报》 2012年第5期421-422,425,共3页 Journal of Xinxiang University
关键词 KPCA BP 神经网络 入侵检测 检测时间 KPCA BP neural network intrusion detection detection time
  • 相关文献

参考文献6

  • 1郭增伟,陈谊.仿真网格安全框架的研究[J].北京工商大学学报(自然科学版),2009,27(3):41-45. 被引量:1
  • 2SCHOLKOPF B, SMOLA A. Learning with Kernel: Support Vector Machines, Regularization, Optimization and Beyond[M]. London, England, MIT Press, 2002: 25-55.
  • 3KIRBY M, SIROVICH L. Application of the KL Procedure for the Characterization of Human Faces[J]. IEEE Transaction on Pattern Analysis Machine Intelligence, 1990, 12(1): 103-108.
  • 4刘全昌,贺国平,张妮娜.KPCA和RSVM结合处理大规模问题研究[J].山东科技大学学报(自然科学版),2008,27(1):72-75. 被引量:3
  • 5朱笑荣,杨德运.基于入侵检测的特征提取方法[J].计算机应用与软件,2010,27(6):30-31. 被引量:3
  • 6(美)哈姆,(美)科斯塔尼克.神经计算原理[M].叶世伟,王海娟,译.北京:机械工业出版社,2007:45.60.

二级参考文献14

  • 1郭辉,王玲,刘贺平.基于核主成分分析与最小二乘支持向量机结合处理时间序列预测问题[J].北京科技大学学报,2006,28(3):303-306. 被引量:14
  • 2陈谊.分布式虚拟环境中的一致性问题研究[J].计算机工程,2007,33(12):60-62. 被引量:4
  • 3Ian F, Kesselman C, Jeffrey M. Grid services for distributed system integration[J]. Computer, 2002, 35(6) : 37 - 46.
  • 4Zhu Sui-hui, Du Zhi-hui, Chai Xu-dong. GDSA: A Grid-based Distributed Simulation Architecture[ C]//Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid Workshops, USA, 2006.
  • 5Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling scalable virtual organizations[J]. International Journal of High Performance Computing Applications, 2001, 15(3) : 200 - 222.
  • 6Bernhard Sch(o)lkopf,Alexander J.Smola,Klaus-Robert Müller.Kernel Principal Component Analysis[J].Neural Comput,1998,12(10):1299-1293.
  • 7CAO L J,CHUA K S,CHONG W K.A Comparison of PCA,KPCA,and ICA for Dimensionality Reduction in Support Vector Machine[J].Neuro-computing,2003,55(2):321-336.
  • 8FUNG G,MANGASARIAN O L.Proximal Support Vector Machine Classifiers[R].Data Mining InstituteTechnical Report 01-02,Februray 2001.Proceedings of KDD-2001,San Francisco,August 2629,.Association for Computing Machinery,New York,2001:77-86.
  • 9LEE Y J,MANGASARIAN O L.RSVM:Reduced Support Vector Machines[R].Data Mining Institute Technical Report 00-07,July 2000.Proceedings of the First SIAM International Conference on Data Mining,Chicago,April 527,2001,SIAM,Philadelphia,CD-ROM Proceeding.
  • 10FUNG G, MANGASARIAN O L. Proximal support vector machine classifiers [EB/OL]. [2001-02-05] http:// www. cs. wise. edu/pub/dmi/tech-reports/01- 02. ps.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部