期刊文献+

核酸酶P1的原核表达、纯化及酶学特性分析

Prokaryotic expression, purification and enzymatic properties of nuclease P1
原文传递
导出
摘要 为了建立一种核酸酶P1(Nuclease P1,NP1)的原核表达纯化系统,首先采用重叠延伸PCR将22段寡核苷酸拼接,获得人工合成的NP1基因。将其克隆至分泌型表达载体pMAL-p4X获得重组质粒pMAL-p4X-NP1,然后将重组载体转化T7 Express和Origami B(DE3)菌株诱导表达,利用Amylose亲和层析柱纯化获得重组蛋白,并对其活性、热稳定性和金属离子依赖性进行系统分析。SDS-PAGE结果显示,重组蛋白MBP-NP1(Maltose binding protein-NP1)在T7 Express和Origami B(DE3)菌株中均可表达,且以可溶性形式存在。活性检测表明Origami B(DE3)菌株中获得的重组蛋白活性高于T7 Express菌株(75.48 U/mg:51.50 U/mg);利用蛋白酶Factor Xa切除MBP标签后,两种重组蛋白的比活力均有提高,分别为258.13 U/mg和139.20 U/mg。重组NP1表现出良好的热稳定性,80℃温浴30 min后重组酶仍具有90%以上的活力。2.0 mmol/L Zn2+对NP1有比较明显的激活作用,相同浓度的Cu2+则对该酶有强烈的抑制作用。该研究实现了NP1在大肠杆菌系统中的功能性表达,为NP1纯酶的制备提供一个替代途径。 To establish a prokaryotic expression and purification protocol for nuclease P1 (NP1), we first obtained a synthetic NP1 by splicing 22 oligonucleotides with overlapping PCR. We constructed and transformed a secretory expression vector pMAL-p4X-NP1 into Escherichia colt host strains T7 Express and Origami B (DE3) separately. Then, the recombinant NP1 was purified by amylose affinity chromatography, and its activity, thermo-stability and metal-ion dependence were investigated systematically. The results indicated that the expressed fusion proteins MBP-NP1 (Maltose binding protein-NP1) existed mainly in soluble form both in host strains T7 Express and Origami B (DE3), but the specific activity of recombinant protein from Origami B(DE3) strain was higher than T7 Express strain (75.48 U/mg : 51.50 U/rag). When the MBP-tag was cleaved by protease Factor Xa, the specific activity both increased up to 258.1 U/rag and 139.2 U/mg. The thermal inactivation experiments demonstrated that the recombinant NP1 was quite stable, and it retained more than 90% of original activity after incubated for 30 rain at 80 ℃ Zn2+ (2.0 retool/L) could increase enzyme activity (to 119.1%), on the contrary, the enzyme activity was reduced by 2.0 mmol/L CU2+ (to 63.12%). This research realized the functional expression of NP1 in the prokaryotic system for the first time, and provided an alternative pathway for NP1 preparation.
出处 《生物工程学报》 CAS CSCD 北大核心 2012年第11期1388-1397,共10页 Chinese Journal of Biotechnology
基金 中央高校基本科研业务费专项(No.QN2009070)资助~~
关键词 核酸酶P1 原核表达 亲和纯化 热稳定性 nuclease P 1, prokaryotic expression, affinity purification, thermo-stability
  • 相关文献

参考文献28

  • 1Kuninaka A, Kibi M, Yoshino H, et al. Studies on 5'-phosphodiesterases in microorganisms Part II. Properties and application of Penicillium citrinum 5'-phosphodiesterase. Agr Biol Chem, 1961, 25(9): 693-701.
  • 2Fujimoto M, Kuninaka A, Yoshino H. Some physical and chemical properties of nuclease P1. Agr Biol Chem, 1975, 39(10): 1991-1997.
  • 3Maekawa K, Tsunasawa S, Dibo G, et al. Primary structure of nuclease P1 from Penicillium citrinum. Eur J Biochem, 1991, 200(3): 651-661.
  • 4Volbeda A, Lahm A, Sakiyama F, et al. Crystal structure ofPenicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J, 1991, 10(7): 1607-1618.
  • 5Romier C, Dominguez R, Lahm A, et al. Recognition of single-stranded DNA by nuclease PI: high resolution crystal structures of complexes with substrate analogs. Proteins, 1998, 32(4): 414-424.
  • 6Iwamatsu A, Aoyama H, Dib6 G, et al. Amino acid sequence of Nuclease S 1 from Aspergillus oryzae. JBiochem, 1991, 110(1): 151-158.
  • 7Potter BVL, Connolly BA, Eckstein F. Synthesis and configurational analysis of a dinucleoside phosphate isotopically chiral at phosphorus. stereochemical course of Penicillium citrinum nuclease P1 reaction. Biochemistry, 1983, 22(6): 1369-1377.
  • 8Fujimoto M, Kuninaka A, Yoshino H. Substrate specificity of nuclease P1. Agr Biol Chem, 1974, 38(9): 1555-1561.
  • 9Fujimoto M, Kuninaka A, Yoshino H. Identity of phosphodiesterase and phosphomonoesterase activities with nuclease P1 (a nuclease from Penicillium citrinum). Agr Biol Chem, 1974, 38(4): 785-790.
  • 10Olsen DB, Eldrup AB, Bartholomew L, et al. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother, 2004, 48(10): 3944-3953.

二级参考文献42

  • 1李爱宏,张亚芳,戴正元,张洪熙,潘学彪.LBD基因家族在高等植物中的研究进展[J].分子植物育种,2006,4(3):301-308. 被引量:5
  • 2Erik V, Patricia S S, Lindee G, Edward S, Buckler I V, Robert M. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436(25): 1119-1126.
  • 3Esteban B, George C, Erik V, Torbert R, Rob M, Sarah H. Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. The Plant Cell, 2006, ! 8: 574-585.
  • 4Namiko S N, Nobuhiro N, Simon M, Hajime S, David J. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 2005,441(11):227-230.
  • 5Elizabeth A K. Floral displays: genetic control of grass inflorescences. Current Opinion in Plant Biology, 2007, 10:26-31.
  • 6Murray H G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8: 4321-4325.
  • 7Aman H, Elizabeth M B, Bin S, Harley M S, Patricia S S. LATERALORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Research, 2007, 35(19): 6663-6671.
  • 8Pavletich N P, Pabo C O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809-817.
  • 9Wang J H, Avitahl N, Cariappa A, Friedrich C, Ikeda T, RenoldA, Andrikopoulos K, Liang L, Pillai S, Morgan B A, Georgopoulos K. Aiolos regulates B cell activation and maturation to effector state. Immunity, 1998, 9(4): 543-553.
  • 10Shuai B, Reynaga-Pena C G, Springer P S. The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiology, 2002, 129(2): 747-761.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部