期刊文献+

概化理论方差分量估计的跨分布分析 被引量:1

Analysis of Cross-distribution for Estimating Variance Components in Generalizability Theory
下载PDF
导出
摘要 方差分量估计是进行概化理论分析的关键。采用MonteCarlo模拟技术,探讨心理与教育测量数据分布对概化理论各种方法估计方差分量的影响。数据分布包括正态、二项和多项分布,估计方法包括Traditional、Jackknife、Bootstrap和MCMC方法。结果表明:(1)Traditional方法估计正态分布和多项分布数据的方差分量相对较好,估计二项分布数据需要校正,Jackknife方法准确地估计了三种分布数据的方差分量,校正的Bootstrap方法和有先验信息的MCMC方法(MCMCinf)估计三种分布数据的方差分量结果较好;(2)心理与教育测量数据分布对四种方法估计概化理论方差分量有影响,数据分布制约着各种方差分量估计方法性能的发挥,需要加以区分地使用。 Estimating variability is an essential part of generalizability theory and is of central importance. The study adopted Monte Carlo data simulation technique to explore the effect of three data distribution on four method of estimating variance components for generalizability theory. Three data distribution were normal data distribution, dichotomous data distribution and polytomous data distribution. Four estimated methods were traditional method, bootstrap method, jackknife method and Markov Chain Monte Carlo method (MCMC). The results show that the performance of four methods is different for three data distribution. Traditional method is good for normal distribution data and polychromous distribution data. But it is not good and needs to be adjusted for dichotomous distribution data. Jackknife method accurately estimates variance components for three data distribution. As for estimating variance components, adjusted bootstrap method is better than unadjusted bootstrap methods. Compared with MCMC method with non-informative priors, MCMC method with informative priors is good for estimating variance components in generalizability theory. Data distribution has an effect on the method of estimating variance components for generalizability theory. Those methods, which can be applied for normal data distribution, could not be applied for other distribution data such as dichotomous data distribution and polytomous data distribution. Data distribution imposes restrictions on estimating variance components for these four methods. So different methods need be distinguished to use to do a good analysis of cross-distribution for estimating variance components in generalizability theory
出处 《心理发展与教育》 CSSCI 北大核心 2012年第6期665-672,共8页 Psychological Development and Education
基金 教育部人文社会科学研究青年基金项目(12YJC190016) 全国教育科学"十二五"规划教育部重点课题(GFA111009) 广东省教育科学"十二五"规划2011年度研究项目(2011TJK161)
关键词 概化理论 方差分量估计 跨分布分析 蒙特卡洛模拟(Monte Carlo) Generalizability Theory Estimating variance components Analysis of cross-distribution Monte Carlodata simulation
  • 相关文献

参考文献18

  • 1American Educational Research Association, American Psychological Association, National Council on Measurement in Education. ( 1985 ). Standards for educational and psychological testing. Washington, DC : Author.
  • 2Brennan, R. L. ( 1992 ). Elements of generalizability theory ( Rev. ed.). Iowa City, IA: ACT.
  • 3Brennan, R. L. ( 2000 ). (Mis) conceptions about generalizability theory. Educational Measurement: Issues and Practice, 19 ( 1 ), 5 -10.
  • 4Brennan, R. L. (2001). Generalizability theory. New York: Springer- Verlag.
  • 5Brennan, R. L., Harris, D. J., & Hanson, B. A. (1987). The bootstrap and other procedures for examining the variability cf estimated variance components in testing contexts (ACT Research Report Series87-7). Iowa City, IA: American College Testing Program.
  • 6Briggs, D. C., & Wilson, M. (2007). Generalizability in item response modeling. Journal of Educational Measurement, 44 (2) , 131 - 155.
  • 7Feng, W. C. (2002). Applicability of the jackknife procedure for estimating standard errors of variance component estimates in selected random effects G study designs. Unpublished doctoral dissertation, University of Iowa.
  • 8Lane, S., Liu, M., Ankenmann, R. D., & Stone, C. A. (1996). Generalizability and validity of mathematics performance assessment. Journal of Educational Measurement, 33 ( 1 ) , 71 - 92.
  • 9Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10, 325 -337.
  • 10Martyn, P., Nicky, B,, Kate, C., & Karen, V. (2006). CODA: Convergence Diagnosis and Output Analysis for MCMC. R News, 6, 7 -11.

二级参考文献2

共引文献12

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部