期刊文献+

多因子投资组合选择模型研究 被引量:6

Study on Multi-factor Portfolio Selection Models
下载PDF
导出
摘要 如何构建合理实用的投资组合优化模型并能快速求解,一直是金融最优化领域关注的热点问题.本文提出了一种新的金融投资模型—多因子结构下的静态MV模型,并对此模型进行了详细研究,得到了不允许卖空情况下的解析最优解,推广了现有单因子模型情况下的结论.新模型与解法克服了现有文献中对投资权重的选择缺乏科学性和可操作性不强等缺点,且适用于我国的金融市场体制. How to construct a reasonable and practical portfolio optimization model and solve it quickly has been a key issue in financial optimization. This paper presents a new portfolio selection model--the static MV-type model under the multi-factor model, which is then studied in detail. The explicit optimal solution is derived under the no-short selling constraint, which significantly improve the conclusions got under the single-factor model. Our new model and solution method overcome current methods' shortcomings such as the lack of scientific foundation and difficulty in implementation. The obtained conclusion can be directly applied to Chinese stock markets.
出处 《工程数学学报》 CSCD 北大核心 2012年第6期807-814,共8页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(70971109 70531030)~~
关键词 均值-方差模型 因子模型 因子载荷 非卖空 最优投资组合 mean-variance models factor model factor loading not short-selling optimal portfolio
  • 相关文献

参考文献9

  • 1Markowtiz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1): 77-91.
  • 2Treynor J, Black F. How to use security analysis to improve portfolio selection[J]. Journal of Business, 1973, 46(1): 66-86.
  • 3Elton E J, Gruber M J, Pm=lberg M W. Simple criteria for optimal portfolio selection[J]. The Journal of Finance, 1976, 31:1343-1357.
  • 4Day T E, Wang Y, Xu Y. Investigating underperformance of mutual fund portfolios[R]. School of Manage- ment, The University of Texas at Dallas, 2001.
  • 5马永开,唐小我.不允许卖空的β值证券投资决策模型研究[J].管理工程学报,1999,13(4):1-4. 被引量:2
  • 6马永开,唐小我.不允许卖空的多因素证券组合投资决策模型[J].系统工程理论与实践,2000,20(2):37-43. 被引量:26
  • 7Velu R, Zhou G F. Testing multi-beta asset pricing models[J]. Journal of Empirical Finance, 1999, 6(3): 219-241.
  • 8马永开,唐小我.基于多因素模型的风险预算方法研究[J].预测,2005,24(1):48-51. 被引量:3
  • 9Bazaraa M S. Nonlinear Programming: Theory and Algorithms[M]. New York: John & Wiley, 1979.

二级参考文献21

  • 1唐小我,傅庚,曹长修.非负约束条件下组合证券投资决策方法研究[J].系统工程,1994,12(6):23-29. 被引量:38
  • 2马永开,唐小我.非负约束条件下组合证券投资决策方法的进一步研究[J].预测,1996,15(4):53-56. 被引量:31
  • 3Scherer B. Portfolio construction and risk budgeting[M].London: Risk Books, 2002.
  • 4Chow G, Kritzman M. Risk budgets[J]. The Journal of Portfolio Management, 2001,27:56-64.
  • 5Sharpe W F. Budgeting and monitoring pension fund risk[J]. Financial Analysts Journal, 2002,58(5) :74-86.
  • 6Brooks M, Bowie D, Cumberworth M, et al.. The practicalities of budgeting, managing and monitoring investment risk for pension funds[C]. Faculty and Institute of Actuaries Investment Conference, Guernsey, 2001.
  • 7Barton W M, Siegel L B. The dimensions of active management [ J ]. The Journal of Portfolio Management,2003,29:35-51.
  • 8Connor G. The three types of factor models: a comparison of their explanatory power [ J ]. Financial Analysts Journal, 1995,51:42-46.
  • 9Amihud Y, Mendelson H. Asset pricing and the bid-ask spread[J ]. Journal of Finance Economic, 1986,17:223-249.
  • 10Chui C W A, Wei K C. Book-to market, firm size, and the turn-of-the-year effect: evidence from pacific-basin emerging markets [ J ]. Pacific-Basin Finance Journal,1998,6:275-298.

共引文献28

同被引文献25

  • 1朱书尚,李端,周迅宇,汪寿阳.论投资组合与金融优化——对理论研究和实践的分析与反思[J].管理科学学报,2004,7(6):1-12. 被引量:38
  • 2Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
  • 3Konno H. Piecewise linear risk function and portfolio optimization[J]. Journal of the Operational Research Society of Japan, 1990, 33(2): 139-156.
  • 4Konno H, Yamazaki H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market[J]. Management Science, 1991, 37(5): 519-529.
  • 5Cai X Q, Teo K L, Yang X Q, et al. Portfolio optimization under minimax rule[J]. Management Science, 2000, 46(7): 957-972.
  • 6Teo K L, Yang X Q. Portfolio selection problem with minimax type risk function[J]. Annals of Operations Research, 2001, 101(1): 333-349.
  • 7Patel N R, Subrahmanyam M G. A simple algorithm for optimal portfolio selection with fixed transaction costs[J]. Management Science, 1982, 28(3): 303-314.
  • 8Mulvey J M, Ziemba W T. Assets and liability allocation in a global environment[C]// Jarrow R, et al., Finance, Handbooks in Operations Research and Management Science, Elsevier, 1995:435-463.
  • 9Konno H, Wijayanyake A. Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints[J]. Mathematical Programming, 2001, 89(2): 233-250.
  • 10Kim J S, Kim Y C, Shin K Y. An algorithm for portfolio optimization problem[J]. Informatica, 2005, 16(1): 93-106.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部