期刊文献+

求解二维浅水方程的高分辨率完全松弛格式(英文)

High-resolution Relaxed Scheme for Two-dimensional Shallow Water Equations
下载PDF
导出
摘要 浅水方程在水利、海洋和环境工程等领域都具有重要的应用.对二维浅水方程,提出了一种高分辨率的完全松弛格式.该格式以松弛近似方法和改进的五阶WENO重构为基础,重构方法的引入提高了格式的精度,并保证格式的基本无振荡性质.时间方向的离散采用三阶保持强稳定性质的Runge-Kutta方法.该格式保持了完全松弛格式简单的优点,即避免了利用Riemann解算器和计算通量函数的雅可比矩阵.用数值算例对格式进行了检验,结果表明该方法健全、有效. The shallow water equations have important applications in hydraulic, ocean and envi- ronmental engineering. A high-resolution relaxed scheme for approximating solutions of two-dimensional shallow water equations is presented. The scheme is based on the re- laxation approximation and an improved fifth-order weighted essentially non-osscillatory (WENO) reconstruction. This reconstruction is adopted in order to improve the accu- racy and to guarantee the non-oscillatory behavior of the resulting method. A third-order strong stability preserving (SSP) Runge-Kutta scheme is used for the time discretization. The scheme benefits from the simplicity of relaxed schemes in that it avoids Riemann solvers and the computation of Jacobians. The performance of our method is illustrated by several numerical experiments. The results show that it is efficient and robust.
出处 《工程数学学报》 CSCD 北大核心 2012年第6期907-914,共8页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11102165) the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University(CHD2011JC039) the NPU Foundationfor Fundamental Research(NPU-FFR-JC201254)
关键词 二维浅水方程 完全松弛格式 WENO重构 稳定性 shallow water equations relaxed scheme WENO reconstruction stability
  • 相关文献

参考文献2

二级参考文献27

  • 1Jianzhong Chen Zhongke Shi.Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws[J].Acta Mechanica Sinica,2006,22(1):84-92. 被引量:7
  • 2Delis A I, Katsaounis T. Relaxation schemes for the shallow water equations[J]. International Journal for Numerical Methods in Fluids, 2003, 41(7): 695-719.
  • 3Jin S, Xin Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J]. Communications on Pure Applied Mathematics, 1995, 48(3): 235-276.
  • 4Seaid M. Non-oscillatory relaxation methods for the shallow water equations in one and two space dimensions[J]. Internation Journal for Numerical Methods in Fluids, 2004, 46(5): 1-28.
  • 5Jiang G S, Shu C W. Efficient implementation of weighted ENO cchemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
  • 6Pareschi L, Russo G. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation[J]. Journal of Scientific Computing, 2005, 25(1): 129-155.
  • 7Jin S. A steady-state capturing method for hyperbolic systems with geometrical source terms[J]. Mathematical Modelling and Numerical Analysis, 2001, 35(4): 631-646.
  • 8Liu, H., Warnecke, G.: Convergence rates for relaxation schemes approximating conservation laws. SIAM J. Numer. Anal. 37:1316-1337 (2000).
  • 9Li, X.G., Yu, X.J., Chen, G.N.; The third-order relaxation schemes for hyperbolic conservation laws. J. Comput. Appl. Math. 138: 93-108 (2002).
  • 10Seaifd, M.: Non-oscillatory relaxation methods for the shallow water equations in one and two space dimensions. Int. J. Numer. Meth.Fluids 46(5): 1-28 (2004).

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部