期刊文献+

贝叶斯理论框架下的2种纵向缺失数据处理方法的比较——以潜在变量增长曲线模型为例 被引量:3

The Comparision of Two Approaches to Bayesian Method for Missing Data in Longitudinal Model——Growth Curve Model for Example
下载PDF
导出
摘要 在贝叶斯估计框架下,通过模拟研究比较完全贝叶斯和部分贝叶斯方法对参数估计的影响.研究结果表明:随着缺失比例的增加,2种方法得到的均方误差(RMSE)都会增大;完全贝叶斯方法和部分贝叶斯方法在缺失比例较小时几乎相同,只在缺失比例为0.5时,前者明显优于后者. The research explored the relative performance of Fully Bayesian method and Partially method in the estimation of growth curve model parameters.Only Simulation studies were used in the compassion in which four missing rates(0,0.10,0.30,and 0.50) were investigated.In each situation,50 matrixes with missing response were generated and the index RMSE(root mean square error) were compared the two approaches.The results showed that:(1) the accuracy of parameter estimations of the two approaches were both affected by the missing rate,and as the increasing of missing rate,the bigger of RMSE.(2)When the missing rate is small,the RMSEs of the two approaches were almost same,however,Fully Bayesian method got better than Partially method when missing rate came to 0.50.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2012年第5期461-465,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 缺失数据 完全贝叶斯 部分贝叶斯 纵向模型 WINBUGS missing data fully Bayesian partially Bayesian longitudinal models WinBUGS
  • 相关文献

参考文献16

  • 1刘红云,孟庆茂.纵向数据分析方法[J].心理科学进展,2003,11(5):586-592. 被引量:45
  • 2利特尔,鲁宾.缺失数据统计分析[M].2版.孙山泽,译.北京:中国统计出版社,2004.
  • 3Nakai M, Ke W. Review of methods for handing missing data in longitudinal data analysis [J]. International Journal fo Mathe- matical Analysis, 2011, 5(1): 1-13.
  • 4Graham J W. Missing data analysis: making it work in the real world [J]. The Annual Review of Psychology, 2009, 60: 549-76.
  • 5Little R J A. Modeling the drop-out mechanism in re- peated-measures studies [J]. Journal of the American Statistical Association, 1995, 90: 1112-1121.
  • 6In Litter T D, Schnabel K U, Baumert J. Modeling longitudinal and multilevel data: practice issues, applied approaches and spe- cific examples [C]. New Jersey: Laerence Erlbaum Associates, 2000: 15-32.
  • 7Rubin D B. Multiple imputation for nonresponse in survers [M]. New York: Wiley, 1987.
  • 8Ibrahim J G, Chen M H, Lipsitz S R, et al. Missing-data methods for gemeralized linear models: a comparative review [J]. Journal of American Statistical Association, 2005, 469(100): 332-346.
  • 9Newman D A. Longitudinal modeling with randomly and sys-tematically missing data: a simulation of Ad hoe, maximum like- lihood, and multiple impution techniques [J]. Organizational Re- search Methods, 2003, 6(3): 328-362.
  • 10Edwards W, Lindman H, Savage L J. Bayesian statistical infer- ence for psychological research [J]. Psychological Review, 1963, 70: 193-242.

二级参考文献13

  • 1[1]Duncan T E, Duncan S C, Strycker L A. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. New Jersey, London: Lawernce Erlbaum Associates, 1999. 12~65
  • 2[2]Raudenbush S W, Chan W. Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency, 1992, 29: 387~411
  • 3[3]J?reskog K G, S?rbom D. Lisrel 8: Structural Equation Modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993. 12~145
  • 4[4]Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73: 13~22
  • 5[5]Arbuckle J L. AMOS for windows, analysis of moment structures Version 3.5. Chicago IL: Smallwaters, 1995. 25~75
  • 6[6]Bentler P M, Wu E. EQS structural equations program manual. Encino,CA: Multivariate software, 1995. 1~10
  • 7[7]Múthen B, Múthen J.Mplus user's guide: http://www.statmodel.com/Mplus Mplus Version 2.1.
  • 8[8]Bryk A S, Raudenbush S W. Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park,CA: Sage Publication, 1992. 12~52
  • 9[9]Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woosdouse G, Draper D. A user's guide to Mlwin. London: Institute of Education, 1999. 1~225
  • 10[10]Longford N T. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested effects. Biometrika, 1987,74: 817~827

共引文献44

同被引文献298

引证文献3

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部