期刊文献+

利用可见近红外光谱多指标综合预测生鲜牛肉储存期 被引量:8

Prediction of Storage Time of Fresh Beef with Multi-Index Using Visible and Near-Infrared Spectroscopy
下载PDF
导出
摘要 建立了牛肉基于TVB-N、菌落总数、pH值和肉色参数L*多个指标的储存期预测模型,利用可见近红外光谱(Vis/NIR)技术结合区间偏最小二乘(iPLS)和遗传算法(GA)建立了各个指标的PLS预测模型,实现了多指标综合无损快速预测4℃下牛肉的储存期。用iPLS和iPLS-GA提取有效波长变量建立PLS预测模型,以预测相关系数和预测标准差作为模型评价标准,结果表明用iPLS-GA选择变量建立的各个指标的PLS预测模型均优于全波段和iPLS组合的PLS模型。由多个指标的预测值和储存期的预测模型,对校正集和预测集样品储存期进行预测,其预测相关系数和标准差分别是0.903,0.897和1.88,2.24。说明利用光谱技术结合得出的储存期预测模型可以实现多指标综合预测牛肉储存期,为无损快速检测牛肉储存期或货架期提供了一种新方法。 The prediction model of beef's storage time was established based on multi indexes of fresh beef, such as TVB-N, colony total, pH value, and L* parameter. Visible and near-infrared spectroscopy (Vis/NIR) combined with interval PLS (iPLS) and genetic algorithm(GA) was investigated for establishing PLS calibration model of above 4 indexes, respectively, and rapid and nondestructive prediction of the storage time of fresh beef stored at 4 ℃ was realized. PLS models of 4 indexes were built with full spectrum and effective variables selected by iPLS and iPLS-GA method, respectively. The performance of each model was evaluated according to two correlations coefficients(R) and standard error (SE) of calibration and prediction sets. Ex- perimental results showed that the performance of all models built with effective variable selected by iPLS-GA was better than full spectrum and iPLS. The storage time of calibration and prediction sets of beef samples was predicted by storage time model with predicted values of above 4 indexes, and was achieved as follows: Re=0. 903, Rp =0. 897, SEC=1. 88 and SEP=2. 24. The study demonstrated that the beef's storage time can be synthetically predicted with multi-index by using visible and near-in- frared spectroscopy combined with the prediction model of beef's storage time. This provides a new method for rapid and non- destructive detection of beef's storage time or shelf life.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第12期3242-3246,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(30771244) 公益性行业(农业)科研经费项目(201003008)资助
关键词 可见近红外光谱 牛肉储存期 多指标检测 变量选择 偏最小二乘 Visible and near-infrared spectroscopy Beef storage time Multiple determination Variable selection PLS
  • 相关文献

参考文献15

  • 1LU Wan-zhen, YUAN Hong-fu, XU Guang-tong, et al(陆婉珍,袁洪福,徐广通,等). Modern Near Infrared Spectroscopy Analytical Technology(现代近红外光谱分析技术). Beijing: China Petrochemical Press(北京:中国石化出版社),2006. 10.
  • 2Savenije B, Geesink G H, van der Palen J G P, et al.Meat Science, 2006, (73): 181.
  • 3Andrés S, Silva A, Soares-Pereira A L, et al. Meat Science, 2008, (78): 217.
  • 4Prieto N, Andrés S, Gira′ldez F J, et al. Meat Science, 2008, (79): 692.
  • 5Holmer S F, McKeith R O, Boler D D, et al. Meat Science, 2009, (82): 86.
  • 6Raúl G, Antonio J S, Joel G, et al. Food Research International, 2011, (44): 331.
  • 7Norgaard L, Saudland A, Wagneret J, et al. Applied Spectroscopy, 2000, (54): 413.
  • 8蔡健荣,万新民,陈全胜.近红外光谱法快速检测猪肉中挥发性盐基氮的含量[J].光学学报,2009,29(10):2808-2812. 被引量:55
  • 9Leardi R, González A L. Chemometrics and Intelligent Laboratory Systems, 1998, (41): 195.
  • 10Leardi R. Journal of Chemonetrics, 2000, (14): 643.

二级参考文献15

  • 1褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:568
  • 2侯瑞锋,黄岚,王忠义,丁海曙,徐志龙.用近红外漫反射光谱检测肉品新鲜度的初步研究[J].光谱学与光谱分析,2006,26(12):2193-2196. 被引量:74
  • 3A. Ripoche, A. S. Guillard. Determination of fatty acid composition of pork fat by Fourier transform infrared spectroscopy [J]. Meat Science, 2001, (58): 299-304.
  • 4Y. Hu, K. Guo, T. Suzuki et al. Quality evaluation of fresh pork using visible and near-infrared spectroscopy with fiber optics in interactanee mode[J]. Transactions of the ASABE, 2008, 51(3) : 1029-1033.
  • 5J. C. Forrest, M. T. Morgan, C. Borggaard et al. Development of technology for the early post mortem prediction of water holding eapacity and drip loss in fresh pork [J]. Meat Science, 2000, 55(1):115-122.
  • 6N. Barlocco, A. Vadell, F. Ballesteros et al. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy [J]. Animal Science, 2006, 82 : 111-116.
  • 7中华人民共和国国家标准.GB/T5009.44-2003.《肉与肉制品卫生标准的分析方法论》.北京:中国标准出出版社,2004.
  • 8L. Norgaard, A. Saudland, J. Wagner et al. Interval partial least squares regression (iPLS) :a comparative chemometric study with an example from near-infrared spectroscopy[J]. Applied Spectroscopy, 2000, 54(3): 413-419.
  • 9L R. Leardi, L. Norgaard. Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions[J]. Journal of Chemometrics, 2004, 18 (11):486-497.
  • 10A. F. C, Pereira, M. J. C. Pontes, F. F. Gambarra et al. NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection [J]. Food Research International, 2008, 41(4) : 341-348.

共引文献54

同被引文献95

引证文献8

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部