期刊文献+

基于局部学习的半监督多标记分类算法 被引量:1

Semi-supervised multi-label classification algorithm based on local learning
下载PDF
导出
摘要 针对在求解半监督多标记分类问题时通常将其分解成若干个单标记半监督二类分类问题从而导致忽视类别之间内在联系的问题,提出基于局部学习的半监督多标记分类方法。该方法避开了多个单标记半监督二类分类问题的求解,采用"整体法"的研究思路,利用基于图的方法,引入基于样本的局部学习正则项和基于类别的拉普拉斯正则项,构建了问题的正则化框架。实验结果表明,所提算法具有较高的查全率和查准率。 Semi-supervised multi-label classification problem is usually decomposed into a set of single-label semi-supervised binary classification problems.However,it results in the ignorance of the inner relationship between labels.A semi-supervised multi-label classification algorithm was presented,which avoided multiple single-label semi-supervised binary classification problems but adopted the overall approach in this paper.On the basis of undirected graph,local learning regularizer for data points and Laplace regularizer for labels were introduced and regularization framework of the problem was constructed.The experimental result shows the proposed algorithm has higher precision and recall.
作者 吕佳
出处 《计算机应用》 CSCD 北大核心 2012年第12期3308-3310,3338,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(11071252) 重庆市教委科技项目(KJ120628) 重庆师范大学博士启动基金资助项目(12XLB030)
关键词 半监督学习 多标记分类问题 局部学习 标记 正则项 semi-supervised learning multi-label classification problem local learning label regularizer
  • 相关文献

参考文献16

  • 1TSOUMAKAS G, KATAKIS |. Muhi-label classification: an over- view[ J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13.
  • 2CHANG E, GOH K, SYCHAY G, et al. Content-based soft annota- tion for multimodal image retrieval using Bayes point machines[ J]. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Conceptual and Dynamical Aspects of Multimedia Content Description, 2003, 13(1) : 26 -38.
  • 3BOUTELL M R, LUO J SHEN X, et al. Learning multi-label scene classification[ J], Pattern Recognition, 2004, 37(9) : 1757 - 1771.
  • 4ZHANG MINLING, ZHANG KUN. Multi-label learning by exploi- ting label dependency[ C]/! Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 999- 1007.
  • 5LIU YI, JIN RONG, YANG LIU. Semi-supervised muhi-label learning by constrained non-negative matrix factorization[ C]// Pro- ceedings of the 21st National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2006:421 -426.
  • 6CHEN GANG, SONG YANQIU, WANG FEI, et al. Semi-super- vised multi-label learning by solving a Sylvester equation[ EB/OL]. [ 2012- 05- 20]. https://www, siam. org/proceedings/dataminingJ 2008/dmO8_37_chen. pdf.
  • 7KONG X N, NG M K, ZHOU Z H. Transductive multi-label learn- ing via label set propagation[ J]. IEEE Transactions on Knowledge and Data Engineering, 2011,23(5): 788-799.
  • 8BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for leaming from labeled and unlabeled examples [ J ]. Journal of Machine Learning Research, 2006, 7 ( 11 ) : 2399 - 2434.
  • 9WU M R, SCHOLKOPF B. Transductive classification via local learning regularization [ C // Proceedings of the 11 th International Conference on Artificial Intelligence and Statistics. Cambridge: MIT Press, 2007 : 624 - 631.
  • 10WANG FEI. A general learning framework using local and global regularization [ J ]. Pattern Recognition, 2010, 43 ( 9 ) : 3120 - 3129.

二级参考文献13

  • 1CHAPELLE O,SCHOLKOPF B,ZIEN A.Semi-supervised learning[M].Cambridge:MIT Press,2006.
  • 2ZHU X J.Semi-supervised learning literature survey[EB/OL].[2010-05-10].hitp://pages.cs.wisc.edu/~ jerryzhu/pub/ssl_survey.pdf.
  • 3ZHU X J,GHAHARMANI Z,LAFFERTY J.Semi-supervised learning using Gaussian fields and harmonic functions[C] //FAWCETT T,MISHRA N.Proceedings of 20th International Conference on Machine Learning,Menlo Park:AAAI Press,2003:912-919.
  • 4BELKIN M,NIYOGI P,SINDHWANI V.Manifold regularization:A geometric framework for learning from labeled and unlabeled examples[J].Journal of Machine Learning Research,2006,7(11):2399-2434.
  • 5ZHOU D Y,BOUSQUET O,LAL T N,et al.Learning with local and global consistency[C] //THRUM S,SAUL L,SCH(O)LKOPF B.Proceedings of the 18th Annual Conference on Neural Information Processing Systems.Cambridge:MIT Press,2003:321-328.
  • 6WU M R,SCHOLKOPF B.Transductive classification via local learning regularization[C] // MEILA M,SHEN X.Proceedings of the 11 th International Conference on Artificial Intelligence and Statistics.Cambridge:MIT Press,2007:624-631.
  • 7XIANG S M,NIE F P,ZHANG C S.Semi-supervised classification via local spline regression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,32(11):2039-2053.
  • 8WANG F.A general learning framework using local and global regularization[J].Pattern Recognition,2010,43(9):3120-3129.
  • 9VAPNIK V.The nature of statistical learning theory[M].Berlin:Springer-Verlag,1995.
  • 10BOTTOU L,VAPNIK V.Local learning algorithms[J].Neural Computation,1992,4(6):888-900.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部