期刊文献+

流水车间成组工件调度问题的多目标优化算法 被引量:3

Multi-objective optimization algorithm for flow shop scheduling with family setup times
下载PDF
导出
摘要 针对优化目标是最小化全部提前/拖期和机器调整次数的多目标流水车间成组工件调度问题,提出了一种改进的变权重进化算法结合延迟调整算法的联合优化方法。首先采用改进的变权重进化算法对加工排序进行寻优;其次,在给定调度序列的情况下采用延迟调整算法对加工时刻进行优化。仿真实验表明,所设计的算法能够有效地求解该类问题。 The objective optimization was to minimize total earliness/tardiness and number of setups at machine.A jointed algorithm to solve problems based on Control Weight Evolutionary Algorithm(CWEA) and optimization algorithm was presented.Firstly,the CWEA was used to determine scheduling sequence preference.Secondly,a kind of optimization algorithm was put forward to adjust the starting time for determined scheduler.The simulation results show that the effectiveness of the proposed algorithm in solving the problem.
出处 《计算机应用》 CSCD 北大核心 2012年第12期3343-3346,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(70572098)
关键词 提前 拖期 多目标优化 进化算法 工件组调整 流水车间 earliness/tardiness multi-objective optimization evolutionary algorithm family setup flow shop
  • 相关文献

参考文献17

  • 1常俊林,郭西进,马小平.并行机成组调度问题的启发式算法[J].计算机工程与应用,2007,43(4):234-236. 被引量:3
  • 2SCHALLER J E, GUPTAND D. Scheduling on a single machine with family setups to minimize total tardiness[ J]. International Jour- nal of Production Economics, 2007, 105(2) : 329 -344.
  • 3CHEN ZHILONG. Scheduling with batch setup times and earlinesstardiness penalties[ J]. European Journal of Operational Research, 1997, 96(3): 518-537.
  • 4DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi- objective genetic algorithm: NSGA- 1I [ J]. IEEE Transactions on Ev- olutionary Computation, 2002, 6(2) : 182 - 197.
  • 5ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[ J]. IEEE Transactions on Evolutionary Computation, 1999, 3 (4) : 257 -271.
  • 6KNOWLES J D, CORNE D W. Approximating the non-dominated front using the Pareto archived evolution strategy[ J]. Evolutionary Computation, 2000, 8(2) : 149 - 172.
  • 7ELAOUD S, LOUKIL T, TEGHEM J. The Pareto fitness genetic al- gorithm: test function study[ J]. European Journal of Operational Research, 2007, 177(3) : 1703 -1719.
  • 8JASZKIEWICZ A. Genetic local search for multi-objective combina- torial optimization[ J]. European Journal of Operational Research, 2002, 137(1): 50-71.
  • 9JASZKIEWICZ A. On the performance of multiple-objective genetic local search on the 0/l knapsack problem: a comparative experiment [ J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (4) : 402 -412.
  • 10ISHIBUCHI H, YOSHIDA T, MURATA T. Balance between ge- netic search and local search in memetic algorithms for muhiobjec- tive permutation flowshop scheduling[ J]. IEEE Transactions on Ev- olutionary Computation, 2003, 7(2) : 204 -223.

二级参考文献4

  • 1C N Potts,M Y Kovalyov.Scheduling with batching:a review[J].European Journal of Operational Research,2000,120(2):228-240.
  • 2Garey M R,Tarjan R E,Wilfong G T.One-processor scheduling with symmetric earliness and tardiness penalties[J].Mathematics of Operations Research,1988,13 (2):330-348.
  • 3Chantaravarapan S.Heuristics for the family scheduling problems to minimize of total tardiness[D].Texas:Texas Tech Univ,2002.
  • 4王秀利,吴惕华,刘磊.一种求解单机成组作业优化调度的启发算法[J].计算机仿真,2003,20(2):48-50. 被引量:8

共引文献3

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部