期刊文献+

基于局部不变特征的图像质量评价 被引量:1

Image quality assessment based on local invariant features
下载PDF
导出
摘要 针对结构相似度算法在感知图像质量时采取平均加权策略的不足,利用人眼对图像中不同区域的关注程度不同的特性,提出了基于局部不变特征的图像质量评价算法。该算法在失真图像结构相似度质量分布图的基础上,提取图像的局部不变特征点,将这些特征点周围一定区域赋予较大的视觉权重,最后运用综合加权策略来衡量失真图像的质量。在标准图像测试库上的实验结果表明,该算法计算复杂度相对较低,较大地提高了结构相似度算法的评价效果,与人眼主观感知图像质量取得了更好的一致性。 In order to overcome the deficiency of the weighted average strategy which is adopted in the structure similarity algorithm for the perception of image quality,considering that certain regions in an image may not bear the same importance as others,an image quality assessment metric based on local invariant features was put forward.The algorithm used structural similarity to calculate the quality map of distorted image,and then extracted the local invariant features points in the distorted image.The region around features points was given more visual importance,and the quality of the image distortion could be evaluated by using integrated weighting strategy.The experimental results on the standard image library show that the computational complexity of this algorithm is relatively lower and the evaluation performance of structure similarity algorithm can be considerably increased,which achieves better consistency with the subjective assessment of human eyes.
出处 《计算机应用》 CSCD 北大核心 2012年第12期3369-3372,3376,共5页 journal of Computer Applications
基金 教育部博士点基金资助项目(20114307120021)
关键词 图像质量评价 结构相似度 尺度不变特征变换 视觉重要性 人眼视觉系统 image quality assessment Structural Similarity(SSIM) Scale Invariant Features Transform(SIFT) visual importance Human Visual System(HVS)
  • 相关文献

参考文献13

  • 1WANG ZHOU, SHANG XINLI. Spatial pooling strategies for per- ceptual image quality assessment[ C]/// Proceedings of IEEE Inter- national Conference on Image Processing. Piscataway: IEEE, 2006: 2945 - 2948.
  • 2WANG ZHOU, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error measurement to structural similarity [ J]. IEEE Transactions on Image Processing, 2004, 13(4): 600 -612.
  • 3WANG ZHOU, SIMONCELH E P, BOVIK A C. Multi-scale struc- tural similarity for image quality assessment[ C]// Proceedings of IEEE Conference on Signals, Systems and Computers. Piscataway: IEEE, 2003:1398 - 1402.
  • 4SHEIKH H R, BOVIK A C, de VECIANA G. An information fidel- ity criterion for image quality assessment using natural scene statis- tics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117 -2128.
  • 5MOORTHY A K, BOVIK A C. Visual importance pooling for image quality assessment[ J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2) : 193 -201.
  • 6LARSON E C, CUONG V U, CHANDLER D M. Can visual fixa- tion patterns improve image fidelity assessment?[ C]// Proceedings of IEEE International Conference on Image Processing. New York: IEEE, 2008:2572 - 2575.
  • 7ENGELKE U, NGUYEN V X, ZEPEMICK H J. Regional attention to structural degradations for perceptual image quality metric design [ C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 2008:869 - 872.
  • 8WANG ZHOU, LI QIANG. Information Content weighting for per- ceptual image quality assessment[ J]. IEEE Transactions on Image Processing, 2011,20(5) : 1185 - 1198.
  • 9TREISMAN A, GELADE G. A feature-integration theory of atten- tion[ J]. Cognitive Psychology, 1980, 12( 1 ) : 97 - 136.
  • 10LOWED G. Distinctive image features from scale-invariant key- points[ J]. International Journal of Computer Vision, 2004, 60(2) : 91 -110.

同被引文献15

  • 1Guang T Z,Jian F C,Wei S L,et al. Cross-dimen-sional Perceptual quality Assessment for Low BitrateVideos[J]. IEEE Trans, on Multimedia, 2008,10(7):1316-1324.
  • 2Zhou W, Bovik A C, Sheikh H R,et al. Image qualityassessment : from error visibility to structural similarity[J]. IEEE Trans, on Image Processing, 2004,13 (4):600-612.
  • 3Lin Z. Lei Z, Xuan Q M, et al. FSIM: A Feature Sim-ilarity Index for Image Quality Assessment[J]. IEEETrans. Image Prcocessing,2011,20(8) :2378-2386.
  • 4Zhou W,Qiang L. Information Content Weighting forPerceptual Image Quality Assessment [ J ]. IEEETrans, on Image Processing,2011,20(5) : 1185-1198.
  • 5Sheikh H R,Zhou W, Bovik A C. LIVE image quali-ty assessment database [EB/OL]. http://live. ece.utexas. edu/research/quality.
  • 6Ponomarenko N, Carli M,Lukin V,et al. Color im-age database for evaluation of image quality metrics[C]//Proceedings of International Workshop on Mul-timedia Signal Processing, Australia.2008:403-408.
  • 7VQEG. Final report from the video quality expert’sgroup on the validation of objective models of videoquality assessment[Online]. available: http://www.its. bldrdoc. gov/vqeg/projects/frtv phase- H /. April24,2011.
  • 8Sheikh H R,Sabir M F,Bovik A C. A Statistical e_valuation of recent full reference image quality assess-ment algorithms[J]. IEEE Trans, on Image Process-ing,2006,15(11) :3440-3451.
  • 9路文,高新波,王体胜.一种基于小波分析的部分参考型图像质量评价方法[J].电子与信息学报,2009,31(2):335-338. 被引量:7
  • 10刘昕鑫,王元庆.基于双焦单目立体视觉的多层次特征检测算法[J].计算机测量与控制,2009,17(2):414-417. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部