期刊文献+

基于Priwitt算子的偏微分方程图像去噪模型 被引量:9

PDE-based image noise removal models based on Priwitt operator
下载PDF
导出
摘要 利用归一化的Priwitt微分算子作为权重,提出了两种融合Gauss曲率和平均曲率扩散的偏微分方程去噪模型,使得它们在去除噪声的同时能保持图像的重要特征。首先,对噪声图像进行Gauss滤波并计算滤波后图像的Priwitt微分算子;然后,新模型根据归一化的Priwitt微分算子自适应地平衡于高斯曲率扩散去噪与平均曲率扩散去噪之间,从而去除图像的噪声。利用偏微分方程有限差分法给出了新模型的离散迭代格式,并进行了数值实验。实验结果表明,新模型不仅迭代收敛的速度快,而且在均方误差和峰值信噪比两个评价指标上均优于单一曲率扩散去噪模型,并更好地保持了图像的细节特征。 Using the normal Priwitt operator as weights,two denoising models based on Partial Differential Equation(PDE),which integrated the Gauss curvature and mean curvature diffusion,were proposed for keeping important features effectively while removing noises.First,the normal Priwitt operator of the filtered image obtained by the Gauss filter from noise image was calculated;second,the proposed models adaptively obtain the balance between the Gauss curvature diffusion noise removal and the mean curvature diffusion noise removal,thus removing noises of image.The iterative schemes of the proposed models were presented by the difference method of PDE.Then some numerical experiments were carried out.Results of experiments show that the proposed models not only converge quickly,but also are better than the denoising model based on single curvature diffusion,and better maintain the image features.
出处 《计算机应用》 CSCD 北大核心 2012年第12期3385-3388,共4页 journal of Computer Applications
基金 江西省自然科学基金资助项目(2010GZS0010) 江西省青年科学家培养计划项目(20122BCB23024) 江西省教育厅科技项目(GJJ12385) 江西省研究生创新基金资助项目(DYCA11007)
关键词 图像去噪 高斯曲率 平均曲率 Priwitt算子 image denoising Gauss curvature mean curvature Priwitt operator
  • 相关文献

参考文献15

  • 1RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[ J]. Physical D, 1992, 60(1/2/3/4) : 259 - 268.
  • 2YOU Y L , KAVEH M. Fourth-order partial differential equations for noise removal [ J]. IEEE Transactions on Image Processing, 2000, 9(10) : 1723 - 1730.
  • 3KIM S, LIM H. Fourth-order partial differential equations for effec- tive image denoising[ EB/OL]. [2012-05-20]. http://www, emis. de/joumals/EJDE/conf-proc/17/k2/kim, pdf.
  • 4YI D, LEE S. Fourth-order partial differential equations for image enhancement[ J]. Applied Mathematics and Computation, 2006, 175(1) :430 -440.
  • 5CHAN T, OSHER S, SHEN J. The digital TV filter and nonlinear denoising[J]. IEEE Transactions on Image Processing, 2001, 10 (2) : 231 -241.
  • 6王艳红,李维国.一种高斯曲率策动和高阶微分相融合的去噪方法[J].中国图象图形学报,2009,14(2):260-266. 被引量:2
  • 7丛维,郭定辉.用于图像去噪的改进型非线性扩散方程[J].计算机应用,2008,28(7):1764-1765. 被引量:1
  • 8郭茂银,田有先.改进的LIP偏微分方程图像去噪方法[J].计算机应用,2011,31(2):383-385. 被引量:5
  • 9ROMENY B. Geometry driven diffusion in computer vision[ M]. Berlin: Springer, 1994.
  • 10PERONA P, MALIK J. Scale, space and edge detection using ani- sotropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 629 -639.

二级参考文献48

  • 1谢美华.基于四方向导数信息的图像非线性扩散去噪[J].红外技术,2004,26(6):51-53. 被引量:3
  • 2贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 3Sochen N, Kimmel R, Malladi N. A geometrical framework for low level vision [ J ]. IEEE Transactions on Image Processing, 1998, 7(3): 310.
  • 4EL-Fallah A I, Ford G E. On mean curvature diffusion in nonlinear image fihing[ J ]. Pattern Recognition Letters, 1998,19 (5-6) :433-437.
  • 5Yezzi A. Modified curvature motion for image smoothing and enhancement[ J]. IEEE Transactions on Image Processing, 1995, 7 ( 3 ) : 345-352.
  • 6Kalaiah A, Varshney A. Modeling and rendering of points with local geometry[ J ]. IEEE Transactions on Visualization and Computer Graphics. 2003,9( 1 ) :100-129.
  • 7Lee Suk-ho,Seo Jin Keun. Noise removal with gauss curvature driven diffusion [ J ]. IEEE Transactions on Image Processing, 2005, 14 ( 7 ) : 904-909.
  • 8Black M J, Sapiro G, Marimont D, et al. Robust anisotropic diffusion [ J]. IEEE Transactions on Image Processing. 1998, 7 (3) : 421-432
  • 9Firsov D, Lui S H. Domain decomposition methods in image denoising using Gaussian curvature [ J ]. Journal of Computational and Applied Mathematics .2006,193 ( 2 ) :460-473.
  • 10[2]AUBERT G,KORNPROBST P.Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations[M].Applied Mathematical Sciences,Springer-Verlag,2001.

共引文献8

同被引文献84

  • 1季虎,孙即祥,邵晓芳,毛玲.图像边缘提取方法及展望[J].计算机工程与应用,2004,40(14):70-73. 被引量:85
  • 2金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69. 被引量:82
  • 3熊保平,杜民.基于PDE图像去噪方法[J].计算机应用,2007,27(8):2025-2026. 被引量:11
  • 4Chan K, Ksedofjhi S, Park K. 2010. A fouilh order dual methud frstaircase rfiion in texture extraction and image restoration |m>hleins[Cl]//2010 17th IKKK International conference on linage Processing(ICIP).
  • 5Jiang L L, Yin H Q,Feng X C. 2009. Adaptive variational models forimage decomposition comhining shiin.a. ivduclion and texlmx* o\trac-tion[ J ]. Journal of Systems Kngiiurring and Klrctronics, 20(2):254-259.
  • 6Kim S, Lim II. 2009. Fourth-order partial diffemitia] eqimliiuis for ef-fective iniae dfTioising[ C ]//Proceedings of the Seventh MississippiState-L AU conference on Differential Kiiations and computatioiiaiSiniulatidiis : 107-121.
  • 7Le T.Vese I,. 2005. Image deccmposition using total variation and div ( BMO)[J]. Moultiscale Modeling and Simulation, 4 (2) : 390-423.
  • 8Le T, Vese L. 2005. Image decomposition using total variation and div (BMO) [ J]. Multiscale Modeling and Simulation, 4(2) : 390-423.
  • 9Lieu L, Vese L. 2008. Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces[J]. Applied mathematics and optimization, 58(2) : 167-193.
  • 10Lysaker M, Lundervold A, Tai X C. 2003. Noise removal using fourthorder partial differential equation with applications to medical magnetic resonance images in space and time[ J]. IEEE Transations on Im-age Processing, 12(12) ; 1579-1590.

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部