期刊文献+

基于压缩感知的改进MPEG-2编码方案

Improved MPEG-2 video coding scheme based on compressed sensing
下载PDF
导出
摘要 为寻找压缩感知在视频编码上的应用并提高MPEG-2的编码效率,提出了基于压缩感知和MPEG-2的改进方案。该视频编码改进方案从标准重构方法与像素域最小全变分重构算法中选出最终重构方法,使最终重构出的图像具有较小均方误差和。像素域最小全变分重构算法的提出,基于原始图像的梯度比残差图像的梯度更稀疏这个特征。实验结果表明,所提出的方案对于各类序列都有性能的提升。对于有比较锐利边缘物体的序列,平均峰值信噪比(PSNR)提高0.5 dB以上;而对于具有较多平坦区域或复杂纹理的序列,平均PSNR也有0.26 dB~0.41 dB的提高。 In order to seek for applications in video coding of Compressed Sensing(CS) and improve the coding efficiency of MPEG-2,a CS and MPEG-2 based improved scheme was proposed.The improved video coding scheme chose the method producing an image with smaller Sum of Squared Differences(SSD) as the final reconstruction method between the standard reconstruction method and the Total Variation(TV) minimization algorithm in the pixel domain,which is based on the fact that the original image has sparser gradient than the residual image.The experimental results show that the proposed scheme is efficient for all kinds of video sequences.The improvement of Peak Signal-to-Noise Ratio(PSNR) is greater than 0.5 dB for the sequences with sharp edges,and 0.26 dB^0.41 dB for sequences with smooth areas or complex textures.
出处 《计算机应用》 CSCD 北大核心 2012年第12期3411-3414,共4页 journal of Computer Applications
关键词 MPEG-2 视频编码 部分离散余弦变换 压缩感知 图像重构 最小全变分 MPEG-2 video coding partial Discrete Cosine Transform(DCT) Compressed Sensing(CS) image reconstruction Total Variation(TV) minimization
  • 相关文献

参考文献13

  • 1CANDES E J, ROMBERG J, TAO T. Robust uncertainty princi- ples: exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 -509.
  • 2CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[ J]. Communications on Pure and Applied Mathematics, 2006, 59(8) : 1207 - 1223.
  • 3DONOHO D L. Compressed sensing[ J]. IEEE Transactions on In- formation Theory, 2006, 52(4) : 1289 - 1306.
  • 4LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: the applica- tion of compressed sensing for rapid MR imaging[ J]. Magnetic Res- onance in Medicine. 2007, 58(6) : 1182 - 1195.
  • 5潘榕,刘昱,侯正信,汪少初.基于局部DCT系数的图像压缩感知编码与重构[J].自动化学报,2011,37(6):674-681. 被引量:28
  • 6ZHANG YIFU, MEI SHUNLIANG, CHEN QUQING, et al. A no- vel image/video coding method based on compressed sensing theory [ C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2008: 1361- 1364.
  • 7DO T T, LU X, SOLE J. Compressive sensing with adaptive pixel domain reconstruction for block-based video coding[ C]// Proceed- ings of IEEE International Conference on Image Processing. Piscat- away: IEEE, 2010:3377-3380.
  • 8DUAN JIZHONG, ZHANG LIYI, LIU YU, et al. An improved vid- eo coding scheme for depth map sequences based on compressed sensing[ C]//Proceedings of International Conference on Multimedia Technolo. Piscatawav: IEEE, 2011:3401 -3404.
  • 9ELDAR Y C. Compressed sensing: theory and applications[ M]. Cambridge: Cambridge University Press, 2012.
  • 10CANDES E, ROMBERG J. Sparsity and incoherence in compres- sive sampling[ J]. Inverse Problems, 2007, 23(3) : 969 - 985.

二级参考文献14

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Yang J F, Zhang Y, Yin W T. A fast alternating direc- tion method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Pro- cessing, 2010, 4(2): 288-297.
  • 4姚庆东,毕厚杰,王兆华,徐孟侠.图像编码基础(第i版).北京:清华大学出版社,2006.50.
  • 5Xie X C, Yu L J. A new video codec based on compressed sensing. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-5.
  • 6Sarkis M, Diepold K. Depth map compression via com- pressed sensing. In: Proceedings of the 16th IEEE Interna- tional Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 737-740.
  • 7Zhang Y F, Mei S L, Chen Q Q, Chen Z B. A novel im- age/video coding method based on compressed sensing the- ory. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 1361-1364.
  • 8Candes E J, Romberg J. Sparsity and incoherence in com- pressive sampling. Inverse Problems, 2007, 23(3): 969-985.
  • 9Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 10Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部