摘要
研究非线性观测器故障诊断优化问题,针对一类状态不能测量的非线性不确定动态系统,提出了一种用RBF神经网络逼近渐变故障的诊断方法。设计非线性观测器来估计系统的状态,利用Lyapunov稳定性定理给出了RBF神经网络的权值、中心、宽度的更新调节律,通过在线调整RBF神经网络的权值、中心、宽度监测和估计系统中发生的非线性故障,实现了状态不能测量的非线性系统渐变故障诊断。最后,仿真例子证明了方法的有效性。
A fault diagnosis method based on RBF neural networks on-line approximation structure for uncertain nonlinear system was presented in this paper. A nonlinear state observer was designed to estimate system states that were inputs to the neural networks. An adaptive RBF neural network with on-line updated weight, centre and the width vector was used to approximate the slowing-varying faults. The adaptive parameter updating laws were derived using the Lyapunov stability theory. The slowing-varying fault diagnoses can be realized for the nonlinear system, in which all the states are not measured. Simulation examples were used to illustrate the effectiveness of the proposed method.
出处
《计算机仿真》
CSCD
北大核心
2012年第11期227-230,267,共5页
Computer Simulation
基金
国家自然科学基金资助项目(61104022)
关键词
非线性观测器
渐变故障
不确定系统
Nonlinear state observer
Slow-varying fault
Uncertain system