期刊文献+

一类非线性系统的渐变故障诊断 被引量:2

Slow-Varying Fault Diagnosis for a Class of Nonlinear Systems
下载PDF
导出
摘要 研究非线性观测器故障诊断优化问题,针对一类状态不能测量的非线性不确定动态系统,提出了一种用RBF神经网络逼近渐变故障的诊断方法。设计非线性观测器来估计系统的状态,利用Lyapunov稳定性定理给出了RBF神经网络的权值、中心、宽度的更新调节律,通过在线调整RBF神经网络的权值、中心、宽度监测和估计系统中发生的非线性故障,实现了状态不能测量的非线性系统渐变故障诊断。最后,仿真例子证明了方法的有效性。 A fault diagnosis method based on RBF neural networks on-line approximation structure for uncertain nonlinear system was presented in this paper. A nonlinear state observer was designed to estimate system states that were inputs to the neural networks. An adaptive RBF neural network with on-line updated weight, centre and the width vector was used to approximate the slowing-varying faults. The adaptive parameter updating laws were derived using the Lyapunov stability theory. The slowing-varying fault diagnoses can be realized for the nonlinear system, in which all the states are not measured. Simulation examples were used to illustrate the effectiveness of the proposed method.
出处 《计算机仿真》 CSCD 北大核心 2012年第11期227-230,267,共5页 Computer Simulation
基金 国家自然科学基金资助项目(61104022)
关键词 非线性观测器 渐变故障 不确定系统 Nonlinear state observer Slow-varying fault Uncertain system
  • 相关文献

参考文献10

  • 1P M Frank. Enhancement of robustness in observer based fault detection [ J ]. International Journal of Control : 1994,59 : 955-998.
  • 2L Guo, H Wang. Fault detection and diagnosis for general stochastic systems using B- spline expansions andnonlinear filters [ J ]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005,52(8) : 1644-1652.
  • 3P Kabore, H Wang. Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems [ J ]. IEEE Transactions on Automatic Control: 2001,46( 11 ) :1805-1810.
  • 4M G Perhinschi, R Marcello, G Campa. An adaptive threshold approach for the design of an actuator failure detection and identification scheme[ J ]. IEEE transactions on control systems technology: 2006,14(3) : 556-566.
  • 5B Jiang, F Chowdhury. Fault estimation and accommodation for linear MIMO discrete - time systems [ J ]. 1EEE Transactions on Control Systems Technology, 2005,13 (3) : 493-499.
  • 6H Wang, S Daley. Actuator fault diagnosis: an adaptive observerbased technique [ J ]. IEEE Transactions on Automatic Control: 1996,41 (7) :1073-1078.
  • 7B Alexander, M M Polycarpou. Automated fault diagnosis in nonlinear multivariable systems using a learning methodology [ J ]. IEEE Transactions on Neural Networks : 2000,11 ( 1 ) :91 - 101.
  • 8X Zhang, M M Polycarpou, T Parisini. A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems [ J ]. IEEE Transactions on Automatic Control : 2002,47 (4) : 576 -593.
  • 9H Talebi, K Khorasani, Tafazoli. A recurrent neural-network- based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellites attitude control subsystem [ J ]. IEEE Transactions on neural networks : 2009,20 ( 1 ) : 45 - 60.
  • 10C Liu, S Zhang, S Hu. Adaptive neural-networks-based fault detection and diagnosis using unmeasured states[J]. IET Control Theory and Applications : 2008,2 ( 12 ) : 1066-1076.

同被引文献25

  • 1李令莱,周东华.基于解析模型的非线性系统鲁棒故障诊断方法综述[J].信息与控制,2004,33(4):451-456. 被引量:20
  • 2S H Lim. Park H. Kim S W. Using Multiple Indexes for Efficient Subsequence Matching in Time - series Database [ J ]. Information Science, 2007,177 (24) :5691 - 5706.
  • 3E Keogh, S Kasetty. On the Need for Time Series Data Mining Benchmarks, A Survey and Empirical Demonstration[ C ]. In : Pro- ceedings of the Sth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Edmonton, Canada, 2002: 102 -111.
  • 4F M:rchen. Time - series knowledge Mining Phd thesis[ M]. Dept of Mathematics and Computer Science, university of Marburg, Ger- many, 2006.
  • 5Rafiei D, Mendelzon A O, Querying time series data based on sim- ilarity [ J ]. IEEE Trans on knowledge and Data Engineering,2000, 12(5) : 675 -693.
  • 6E Keogh. Data mining and machine learning in time series data- base[ C]. Proc of the 5th Industrial Conference on Data Mining (ICDM). Leipzing: [ s. hi, 2005:406 -417.
  • 7Lee M. Hsu W. Supporting Frequent Updates in R - trees: A Bottom - up Approach[ C]. In: Proceedings of the 29th Interna- tional Conference on Very Large Data Bases, Berlin, Germany, 2003:608 - 619.
  • 8贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 9Janusz M,Venkatasubramanian V.Automatic generation ofqualitative description of process trends for fault detectionand diagnosis[J].Engineering Application of ArtificialIntelligence,1991:4329-4339.
  • 10Dash S,Rengaswamy R,Venkatasubramanian V.A novelinterval-halving algorithm for process trend identification[C]//4th IFAC Workshop on On-line Fault Detection and Supervisionin the Chemical Process Industries,Jejudo Island,Korea,2001:173-178.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部