期刊文献+

基于FOA-GRNN油井计量原油含水率的预测 被引量:17

Application of FOA-GRNN to Prediction of Moisture Content in Crude Oil of Wellheat Metering
下载PDF
导出
摘要 研究原油含水率准确预测问题,提供高精度的原油含水率数据在油井计量中具有重要意义。针对原油含水率预测受到多因素影响,由于原油中存在复杂的非线性关系,传统的预测方法无法满足预测精度要求。为了提高原油含水率的预测精度,提出了果蝇优化广义回归神经网络的原油含水率预测方法,果蝇优化算法用于广义回归神经网络的参数优化。通过同轴线相位法含水率计的测量系统对原油含水率有影响的多个参量进行测定,建立果蝇算法优化广义回归神经网络的原油含水率预测模型。仿真结果表明:相对于广泛应用的BPNN预测模型,果蝇算法优化的广义回归神经网络预测精度高,是一种实用有效的原油含水率预测方法。 Accurate prediction in crude oil moisture content and the high accuracy data of crude oil moisture con- tent has vital importance in oil well measurement. The moisture content prediction can be affected by many factors, and there is complicated nonlinear relationship between the prediction and factors, so the traditional forecast methods can not meet the requirements of prediction accuracy. In order to improve the prediction precision, a crude oil mois- ture content measure method named fruit fly optimization algorithm of the generalized regression neural network fore- cast method was put forward, which was used for generalized regression neural network parameters optimization. By determing several parameters which can affect crude oil moisture content using the coaxial line phase indicator meas- urement system, we established fruit fly optimization algorithm of the generalized regression neural network predicting model of crude oil moisture content. Simulation and experimental results show that: relative to the widely used Back Propagation Neural Network(BPNN) prediction model, the ffruit fly optimization algorithm of the generalized regres- sion neural network, has higher prediction accuracy. It is a practical and effective prediction method of crude oil moisture content.
出处 《计算机仿真》 CSCD 北大核心 2012年第11期243-246,259,共5页 Computer Simulation
关键词 油井计量 原油含水率 果蝇算法 广义回归神经网络 预测模型 Wellhead metering Crude oil moisture Fruit fly optimization algorithm Generalized regression neu-ral network Prediction model
  • 相关文献

参考文献4

二级参考文献18

  • 1刘兴斌,强锡富,庄海军.沾污对取样含水率计的影响及传感器的设计原则[J].测井技术,1995,19(1):54-57. 被引量:1
  • 2[美]D.郑均.电磁场和电磁波[M].上海:上海交通大学出版社,1984..
  • 3Hart,P E,Nilsson,N J and Raphael,B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cy- bernetics SSC4,1968(2) : 100-107.
  • 4Friedman, M. A mathematical programming model for optimal scheduling for buses depature under determin- istic condition [J]. Transportation Research, 1976, 10 (2) :83-90.
  • 5Gupta,Y P,Gupta,M C,Kumar,A and Sundram,C. A genetic algorithm-based approach to cell composition and layout design problems[J]. Int. Journal of Produc- tion Research, 1996,34 (2) : 447-482.
  • 6Yan,S Y,Lee W T and Shih,Y L. A path-based analo- gous particle swarm optimization algorithm for mini- mum cost network flow problems with concave arc costs[J]. Transportation Planning Journal, 2007, 36 (3) ..393-424.
  • 7Pan,W T. A new evolutionary computation approach: Fruit Fly Optimization Algorithm[C]. 2011 Conference of Digital Technology and innovation Management Tai- pei,2011.
  • 8Pan,W T. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, In Press, 2011.
  • 9Tong, L L and Shih, B C. Predict the financial crisis by using grey relation analysis, neural network, and case- based reasoning[J]. Chinese. Manage Rev, 2011,4 (2) : 25-37.
  • 10Deng,J. The control problems of grey system[J]. System & Control Letters, 1982 (5): 288-294.

共引文献166

同被引文献189

引证文献17

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部