期刊文献+

二分网络中基于谱聚类的协同推荐 被引量:1

Collaborative recommendation based on spectral clustering in bipartite network
下载PDF
导出
摘要 提出一种基于谱聚类的协同推荐算法(SCBCF)。首先从用户——项目二分网络的单顶点投影中得到用户之间的相似矩阵,然后对该矩阵应用谱聚类算法,将用户聚成k类,并将得到的聚类结果用于数据平滑和邻居结点的选择,最后基于最近邻居集评分行为,对目标用户产生推荐。在Movie-Lens上的实验结果证明本文方法比传统的协同过滤算法能更好地应用于二分网络的协同推荐。 This paper proposes an approach based on spectral clustering for collaborative recommendation.Firstly,we conduct user-user similarity matnx from item-user bipartite network through one-mode projection. Then we apply spectral clustering method to cluster users into k clusters from the user-user similarity matrix for data smoothing and neighborhood seleetion.At last,we make recommendation for target user based on the rating behavior of nearest neighbors set.Experiment result on MovieLens shows that our proposed approach is better than traditional collaborative filtering algorithm.
出处 《微型机与应用》 2012年第22期60-63,共4页 Microcomputer & Its Applications
关键词 协同过滤 谱聚类 推荐算法 平均绝对偏差 collaborative filtering spectral clustering recommendation algorithm MAE
  • 相关文献

参考文献5

  • 1SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques [J].Adv. Artif. Intell, 2009 (1) : 421-425.
  • 2ZHOU T, REN J,MEDO M,et al.Bipartite network projection and personal recommendation [ J ]. Phys. Rev. E, 2007,76 (4) : 046115-046121.
  • 3LUXBURG U.A tutorial on spectral clustering[J].Statistics and Computing, 2007,17(4) : 395-416.
  • 4SARWAR B, KARYPIS G, KONSTAN J, et al.ltem-based collaborative ltering recommendation algorithms[C].In www10. Hong Kong, 2001.
  • 5XUE G R, LIN C,YANG Q,et al.Scalable collaborative filtering using cluster-based smoothing[C].In Proceedings of the ACM SIGIR Conference, Salvador, Brazil, 2005: 114-121.

同被引文献16

  • 1Sinha R, Swearlngen K. Cmnparing recommendations made by on].ine systems and friends [ C ]//Proc of DELOS-NSF Workshop: Persona- lisation and Recommender Systems in Digital Libraries. 2001.
  • 2Bonhard P, Sasse M A. Konwing me, knowing you:using profiles and social networking to improve recommender system[ J]. BT Technolo- gy Journal, 2006,24 ( 3 ) : 84- 98.
  • 3Lam C. SNACK:incorporating social network information in automa- ted collaborative filtering[ C]//Proc of the 5th ACM Conference on Electronic Commerce. New York: ACM Press,2004:254-255.
  • 4Konstas L, Stathopoulos V, Jose J M. On social networks and collabo- rative recommendation[ C ]//Proc of the 32nd International ACM SI- GIR Conference on Research and Development in Information Retrie- val. New Yol~k :ACM Press,2009 : 195-202.
  • 5Symeonidis P, Tiakas E, Manolopoulos Y. Product recommendation and rating prediction based on multi-modal social networks [ C ]//Proe of the 5th ACM Conference on Recommender Systems. New York: ACM Press ,2011:61-68.
  • 6Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystr~m method[J]. Pattern Analysis and Machine Intelligence, 2004,26(2) :214-225.
  • 7Von Luxburg U. A tutorial on spectral clustering[ J~. Statistics and Computin g, 2007,17 ( 4 ) : 395 - 416.
  • 8Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm [ C ]//Advances in Neural Information Processing Sys- tems. Cambridge : MIT Press,200:2:849- 856.
  • 9蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:188
  • 10陈超,齐开悦,陈剑波.基于用户聚类的播客节目推荐[J].计算机应用与软件,2009,26(3):7-10. 被引量:2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部