期刊文献+

改进协同粒子群算法的汽车涂装线调度 被引量:1

Improved Cooperative Particle Swarm Algorithm for Automobile Painting Line Scheduling
下载PDF
导出
摘要 针对汽车涂装线的复杂调度问题,提出了基于改进协同粒子群算法的新调度方法,建立了汽车涂装线的最优调度模型。将协同粒子群算法生成的各子种群看成一个个单独的Agent,构成一个多智能体联盟,子种群Agent能感知和学习联盟中其他Agent的最优位置和自身信息,进行粒子的惯性权重自适应调整。通过相互竞争,协同进化,得到联盟最优值,解码获取最优的调度策略。最后通过实例仿真,验证了该算法在涂装线调度优化中的可行性和有效性。 To solve the complex scheduling problem in automobile painting line, a new method based on an improved cooperative parti- cle swarm algorithm was proposed. Firstly, the model of optimal scheduling was established. Then the sub - swarm produced by the co- operative particle swarm algorithm was treated as an agent, and a multi - agent alliance was composed by all of these agents. Mean- while, the inertia weight of particle could be adjusted adaptively by perceiving and learning the optimal position informations from them- selves and the other agents. Through competing with each other, agents could evolute cooperatively to find out the optimal value of alli- ance, and decode to get the optimal scheduling policy. Finally, the algorithm was simulated to prove its feasibility and effectiveness when be used in automobile painting line scheduling.
出处 《控制工程》 CSCD 北大核心 2012年第6期963-967,共5页 Control Engineering of China
基金 浙江省科技厅项目(2008C21160)
关键词 涂装线 调度 协同粒子群 AGENT painting line scheduling cooperative particle swarm Agent
  • 相关文献

参考文献7

  • 1徐新黎,郝平,王万良.多Agent动态调度方法在染色车间调度中的应用[J].计算机集成制造系统,2010,16(3):611-620. 被引量:12
  • 2Krink T, Vesterstrom J S,Riget J. Particles swarm optimisation withspatial particle extension [ C ]. Proceeedings of the IEEE Congresson Evolutionary Computation ( CEC). Hnoolulu,2002 : 1471-1479.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the IEEE Conference on Evolutionary Compu-tation. 2001:101- 106.
  • 4Clerc M. The swarm and queen:Towards a deterministic and adap-tive particle swarm optimization[ C]. Proceedings of the IEEE Con-gress on Evolutionary Computation. 1999 : 58-73.
  • 5Van den Bergh F,Engelbrecht A P. A cooperative approach to par-ticle swarm optimization [ J] . IEEE Transactions on EvolutionaryComputation, 2004, 8(3) : 225-239.
  • 6冯洪奎,鲍劲松,金烨.混合粒子群优化算法求解多车辆拖动货物问题[J].计算机集成制造系统,2010,16(7):1427-1436. 被引量:6
  • 7Ye Yong-wei. Research on optimal control of multi-agent technolo-gy in automobile body coating line system [ C ]. 2009 IEEE Interna-tional Conference on Intelligent Computing and Intelligent Sys-tems. 2009,2:1-6.

二级参考文献34

  • 1徐新黎,王万良,吴启迪.改进计算能量函数下作业车间调度的混沌神经网络方法[J].控制理论与应用,2004,21(2):311-314. 被引量:3
  • 2戴智杰,宋执环,宋春跃.基于遗传算法的浸染生产排缸策略[J].运筹与管理,2006,15(2):149-153. 被引量:15
  • 3VANCZA J,MARKUS A.An agent model for incentive-based production schedulingCJ].Computers in Industry,2000,43 (2):173-187.
  • 4WALSH W E,WELLMAN M P,WURMAN P R,et al.S-ome economics of market-based distributed scheduling[C]//Proceedings of the 18th IEEE International Conference on Distributed Computing Systems.Washington,D.C.,USA:IEEE,1998:612-621.
  • 5PAUL V,HADELI,BART S G,et al.MAS coordination and control based on stigmergy[JJ.Computers in Industry,2007,58(7):621-629.
  • 6YU X,RAM B.Bio-inspired scheduling for dynamic Job Shops with flexible routing and sequence-dependent setups[J].International Journal of Production Research,2006,44 (22):4793-4813.
  • 7XIANG W,LEE H P.Ant colony intelligence in multi-Agent dynamic manufacturing scheduling[J].Engineering Application of Artificial Intelligence,2008,21(1):73-85.
  • 8KARUNA H,PAUL V,MARTIN K,et al.Multi-Agent coordination and control using stigmergy[J].Computers in Industry,2004,53(1):75-96.
  • 9SHEN Weiming.Distributed manufacturing scheduling using intelligent agents[J].IEEE Intelligent Systems,2002,17(1):88-94.
  • 10XU Xinli,WANG Xiangli,WANG Wanliang.Improved Job-Shop scheduling method based on multi-agent[J].WSEAS Transactions on Information Science and Applications,2006,3 (7):1308-1315.

共引文献15

同被引文献9

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部