摘要
针对交叉口大运量快速公交(BRT)优先通行控制问题,基于智能控制理论提出一种交叉口BRT实时优先通行控制方法。以BRT车辆的延误时间、载客量和非BRT相位社会车辆的排队长度作为神经网络模糊控制器的输入变量,输出BRT通过交叉口的优先等级,以此得到其优先服务方案,有条件地给予BRT车辆的优先通行权。仿真结果表明,与定时控制相比,所提出的方法在交叉口非饱和交通流下,能有效减少BRT车辆通过交叉口的延误时间和停车率,且交叉口的正常交通秩序不受影响。
Based on intelligent control theory, a BRT (Bus Rapid Transit) real -time priority control method is proposed for an isola- ted intersection. The input variables to the neural network fuzzy controller are BRT time delay, the number of passengers and the queue length of the social vehicle in non - BRT phase . The output is the level of priority through the intersection of BRT and then the service program is generated which grants conditional passage rights to BRT vehicles. Simulation results show that, compared with the fixed - time traffic signal control, the proposed method can effectively reduce the BRT delay time and the stop rate of intersection passage. Be- sides, the normal traffic order is uninfluenced under the non -saturated traffic flow.
出处
《控制工程》
CSCD
北大核心
2012年第6期1003-1006,1010,共5页
Control Engineering of China
基金
兰州市智能交通"十二五"规划项目(H1014cc008)
亚行贷款兰州城市交通智能交通系统设计项目(H1014cc1002)
关键词
智能交通
实时优先
神经网络模糊控制
系统仿真
intelligent transportation
real -time priority
neural network fuzzy control
system simulation