期刊文献+

基于均值-方差准则的保险公司最优投资策略 被引量:2

Optimal Investment Strategy for an Insurer Under Mean-Variance Criterion
原文传递
导出
摘要 研究了保险公司在均值-方差准则下的最优投资问题,其中保险公司的盈余过程由带随机扰动的Cramer-Lundberg模型刻画,而且保险公司可将其盈余投资于无风险资产和一种风险资产.利用随机动态规划方法,通过求解相应的HJB方程,得到了均值方差模型的最优投资策略和有效前沿.最后,给出了数值算例说明扰动项对有效前沿的影响. In this paper, optimal investment strategy for an insurer under mean-variance criterion is discussed, where the surplus process of the insurer is a kind of perturbed classical risk model and the insurer can invest it's surplus on risk-less asset and a kind of risky asset. By solving the Hamilton-Jacobi-Bellman equations, we obtain that optimal investment strategy and the efficient frontier for the mean-variance problem. At last, we present numerical examples to show how the perturbed term effects the efficient frontier.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第22期24-30,共7页 Mathematics in Practice and Theory
关键词 最优投资策略 均值-方差准则 Hamilton—Jacobi—Bellman方程 optimal investment strategy mean-variance criterion Hamilton-Jacobi-Bellman equation
  • 相关文献

参考文献7

  • 1Markowitz H. Portfolio selection [J]. Journal of Finance, 1952, 7: 77-91.
  • 2Kaluszka M. An extension of Arrow's result on oPtimality of a stop-loss contract[J]. Insurance: Mathematics and Economics, 2004, 35: 527-536.
  • 3Bauerle N. Benchmark and mean-variance problems for insurer [J]. Mathematical Methods of Op- erations Researchq 2005~ 62: 159-165.
  • 4Wang Z, Xia J, Zhang L. Optimal investment for an insurer:the martingale approach [J]. Insurance: Mathematics and Economics, 2007, 40: 322-334.
  • 5Bai L H, Zhang H. Dynamic meamvariance problem with constrained risk control for the insurers [J]. Mathematical Methods of Operations Research, 2008, 68: 181-205.
  • 6Xu L. On maximizing the expected terminal utility by investment and reinsurance [J]. Journal of Industrial and Management Optimization, 2008, 4(4): 801-815.
  • 7Paulsen J. Risk theory in a stochastic economic enviroment [J]. Stochastic Processes and their Applications, 1993, 46: 327-361.

同被引文献36

  • 1汤若岩,吴少新,王江.保险投资的再探讨[J].金融研究,1988(5):50-53. 被引量:1
  • 2Andrew E. Lim, Bernard along. A benchmarking approach to optimal asset allocation for insurers and pension funds. Insurance : Mathematics and Economics,2010, (46) : 317 - 327.
  • 3Bauerle N. Benchmark and mean-variance problems for insurer [ J ]. Mathematical Methods of Operations Re- search ,2005, (62) :159 - 165.
  • 4Cramer. H, On the Mathematical Theory of Risk [ M ]. Stockholm : Skandia Jubilee Volume, 1930.
  • 5Li Yang H, Deng X. Optimal dynamic portfolio selection with earnings-at-risk [ J ]. Journal of Optimization Theory and Applications ,2007,132 (3) :459 - 473.
  • 6Li Z, Tan K, Yang H. Multi period optimal investment-consumption strategies with mortality risk and environ- ment uncertainty [ J ]. North American Actuarial Journal,2008,12 ( 1 ) :47 - 57.
  • 7Markowitz H. Portfolio selection [ J ]. Jdtarnal of Finance, 1952, (7):77 -91.
  • 8Peterson. J. A. The dependence of Investment Policy on the Liabilities of a Lift Office [ Z ]. Transactions of the 22nd International Congress of Actuaries in Sydney,1984, (15):201 -215.
  • 9Wang Z, Xia J, Zhang L. Optimal investment for an insurer : the martingale approach [ J ]. Insurance : Mathe- matical and Economics,2007, (40) : 322 - 334.
  • 10Browne S. Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin. Mathematics Methods Operator Research, 1995, 20(4): 937-957.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部