摘要
设P_n是具有n个顶点的路,令δ=rn+1,我们S_δ~*表示把rP_(n+1)的每个分支的一个1度点重迭在一起得到的图.用Y_(λ_1δ)^(S*)表示把r_1S_δ~*中每个分支的r度顶点与S_δ~*的r度顶点依次邻接后得到的图,Y_(λ_2δ)^(S*)表示把用r_2Y_(λ_1δ)^(S*)中每个分支的r+r1度顶点与S_δ~*的r度顶点依次邻接后得到的图,一般地,Y_(λ_kδ)^(S*)表示把用r_kY_(λ_(k-1)δ)^(S*)中每个分支的r+r_k-1度顶点与S_δ~*的r度顶点依次邻接后得到的图,运用图的伴随多项式的性质,证明了图Y_(λ_kδ)^(S*)∪β_kS_δ~*的伴随多项式的因式分解定理,进而得到了这类图的补图的色等价性.
Let Pn be the path with n vertices and let S*δ(δ=rn+1) be the graph consisting of rPn+1 by coinciding one vertex of degree 1 of each component of rPn+1. We denote by Yλ1δS* the graph consisting of r1S*δ and S*δ by adjacenting the vertex of degree r of every component of r1S*δ with the vertex of degree r of S*δ, respectively, and let Yλ2δ S* be the graph obtained from Yλ2δ S* and δ S* by adjacenting the vertex of degree r+r1 of every component of r2 Yλ1δ S* with the vertex of degree r of S δ *, respectively, In geaeral, Yλκδ S* be the graph consisting of by adjacenting the vertex of degree of every component of with the vertex of degree r of , By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Furthermore, We obtain structure characteristics of chromatically equivalent graphs of their complements.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第22期251-264,共14页
Mathematics in Practice and Theory
基金
国家自然科学基金(10671008)
关键词
色多项式
伴随多项式
因式分解
色等价性
chromatic polynomial
adjoint polynomials
factorization
chromatically equivalence