期刊文献+

HTPB推进剂粘聚区本构模型反演识别研究 被引量:4

Inversion Identification of Constitutive Model of Cohesive Zone in HTPB Propellant
下载PDF
导出
摘要 端羟基聚丁二烯(HTPB)推进剂在拉伸过程中裂尖存在一个明显的非线性粘聚区,粘聚区本构模型的精度影响着推进剂装药裂纹起裂和扩展过程的数值仿真结果。为了准确地获得HT-PB推进剂的粘聚区本构模型,建立了基于实验的反演识别方法,该方法通过实验获取粘聚区断裂能和断裂强度参数,使用有限元模型更新方法得到粘聚区本构曲线形式参数。将获得的本构模型应用于裂纹起裂和扩展过程仿真,研究结果表明所建立的粘聚区本构参数获取方法简单可行;所获得的粘聚区本构参数可以准确地模拟出HTPB推进剂裂纹起裂和扩展过程。 There exists a nonlinear cohesive zone at the crack tip in stretching hydroxyl terminated poly- butadiene (HTPB) propellant, and the accuracy of its constitutive model can affect the fracture simula- tion greatly. In order to establish a precise constitutive model, an experiment-based inversion method was presented. The cohesive fracture energy and fracture strength were obtained experimentally, and the con- stitutive curve parameters of cohesive zone were determined by using the finite element model updating approach. The established constitutive model was applied to the crack initiation and propagation simula- tion. The results indicate that the presented method is simple and feasible, and it can predicate the crack initiation and propagation in HTPB propellant accurately.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第11期1335-1341,共7页 Acta Armamentarii
基金 总装备部重点预先研究项目(20101019)
关键词 航空 航天推进系统 推进剂 粘聚区 反演识别法 有限元 断裂力学 propulsion system of aviation and aerospace propellant cohesive zone inversion identifi-cation method finite element method fracture mechanics
  • 相关文献

参考文献12

  • 1Ting S K M, Williams J G, Ivankovic A. Characterization of the fracture behavior of polyethylene using measured cohesive curves III: structure-property relationships [ J]. Polymer Engineering & Science, 2006, 46 (6) : 792 - 798.
  • 2Ting S K M, Williams J G, Ivankovic A. Characterization of the fracture behavior of polyethylene using measured cohesive curves II: variation of cohesive parameters with rate and constraint [ J ]. Polymer Engineering & Science, 2006, 46(6) : 778 -791.
  • 3Ting S K M, Williams J G, Ivankovic A. Characterization of the fracture behavior of polyethylene using measured cohesive curves I : effects of constraint and rate[J]. Polymer Engineering & Science, 2006,46(6) : 763 -777.
  • 4Song S H, Paulino G H, Buttlar W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelas- tic bulk material[ J]. Engineering Fracture Mechanics, 2006, 73 (18) : 2829 -2848.
  • 5Cornec A, Scheider I, Schwalbe K H. On the practical application of the cohesive model [ J ]. Engineering Fracture Mechanics, 2003, 70(14) : 1963 -1987.
  • 6Wang J, Qin Q H, Kang Y L, et al. Viscoelastic adhesive interfa- cial model and experimental characterization for interfacial parame- ters[J]. Mechanics of Materials, 2010, 42(5) : 537 -547.
  • 7Shen B, Paulino G. Direct extraction of cohesive fracture proper- ties from digital image correlation: a hybrid inverse technique[ J]. Experimental Mechanics, 2011, 51 (2) : 143 - 163.
  • 8GJB770B-2005火药试验方法[S].国防科学技术工业委员会.2005.
  • 9Tussiwand G S, Saouma V E,Terzenbach R, et al. Fracture me- chanics of composite solid rocket propellant grains: material tes- ting [ J ]. Journal of Propulsion and Power, 2009, 25 ( 1 ) : 60 - 73.
  • 10Liu C T. Crack growth behavior in a solid propellant[ J]. Engi- neering Fracture Mechanics, 1996, 56( 1 ) : 127 - 135.

二级参考文献6

共引文献16

同被引文献71

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部