期刊文献+

多Agent交互式动态影响图的建模方法 被引量:2

The Exploration on Modeling Methods for Interactive Multi-agent Dynamic Influence Diagrams
下载PDF
导出
摘要 交互式动态影响图是一种以动态影响图为基础,利用有向图构造Agent之间交互作用的决策概率模型,目前只能解决2个Agent的问题.根据概率图模型理论、交互式部分可观测马尔可夫决策过程性质、最大奖励期望值原理等以3个Agent为例建立多Agent交互式动态影响图(I-MADIDs)模型,探讨除建模Agent之外,其他非建模Agent之间存在稳定关系时,如何简化I-MADIDs模型.最后对老虎问题进行建模,利用HUGIN7.0对其进行求解,分别讨论了建模A-gent和其他Agent的决策情况,对比了精确方法和简化模型中贝叶斯参数学习近似方法中Agent的决策情况,证明了近似方法的有效性. Interactive dynamic influence diagrams (I-DIDs) are a kind of probability graph models based on dynamic influence dia grams,using directed graph to construct decision-making models about interaction between agents. I-DIDs can only solve 2 agents' problems. Take 3 Agents for example,the paper tries to model interactive multi-agent dynamic influence diagrams (I-MADIDs) by means of probabilistic graph model theory,interactive partially observable Markov decision process nature and the principle of maxi- mum reward expectations,and explores how to simply I-MADIDs when there is the stable relationship between non modeling agents. Finally,we model the tiger problem, solve models using HUGIN7. 0, and discuss separately various decision-making cases for the modeling agent and other agents. Examples prove the validity of the approximate method based on Bayesian parameter learning through comparing the exact and approximate methods.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期985-990,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目(60975052) 江西省教育厅科技重点项目(GJJ10695)
关键词 交互式动态影响图 多AGENT建模 概率图模型 interaetive dynamic influence diagrams multi-agent modeling probabilistic graph model
  • 相关文献

参考文献9

  • 1Polich K, Gmytrasiewicz P. Interactive dynamic influence diagrams[C]//Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Sys- tems. New York, USA : ACM, 2006 : 147-149.
  • 2Prashant D, Zeng Y F, Chen Q Y. Graphical models for interactive POMDPs: representations and solutions [J]. Autonomous Agents and Multi-agent Systems, 2009, 18 (3) :376-416.
  • 3Zeng Y,Chen Y, Doshi P. Approximating behavioral e- quivalence of models using top-K policy paths[C]//Inter- national Joint Conference on Autonomous Agents and Multi-Agent Systems. Richland, USA: ACM, 2011 : 1229-1230.
  • 4Zeng Y,Doshi P,Pan Y,et al. Utilizing partial policies for identifying equivalence of behavioral models [C]//Pro- ceedings of the Conference on Association for the Ad- vancement of Artificial Intelligence.[s. 1. ] : AAAI, 2011 : 1083-1088.
  • 5Zeng Y,Doshi P,Chen Q. Approximate solutions of inter- active dynamic influence diagrams using model clustering [C]//Proeeedings of the 22th international Conference on Association for the Advancement of Artificial Intelli- gence. Vancouver, Canada : AAAI, 2007 : 782-787.
  • 6Doshi P, Chandrasekaran M,Zeng Y. Epsilon-subjeetive e- quivalence of models for interactive dynamic influence dia-grams [C]//IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Toronto, Canada .. IEEE, 2010 : 165-172.
  • 7Doshi P, Zeng Y. Improved approximation of interactive dynamic influence diagrams using discriminative model updates[C]//Proceedings of 8th International Conference on Autonomous Agents and Multiagent Systems. Rich-land, USA : 2009 : 907-914.
  • 8Cooper G F, Herskovits E. A bayesian method for the in- duction of probabilistic networks from data[J]. Machine Learning,1992,9(4) :309 347.
  • 9Gmytrasiewicz P J,Prashant D. A framework for sequen- tial planning in multi-agent settings[J]. J Artif Int Res, 2005,24:49-79.

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部