期刊文献+

质子化和低能电子俘获对N-糖苷键解离性质影响的理论研究

Theoretical Study of Protonation and Low-energy Electron Attachment Effects on Cleavage and Hydrolysis of the N-Glycosidic Bond
下载PDF
导出
摘要 采用B3LYP密度泛函方法,在6-311++G(2d,2p)基组水平上,对3种嘌呤核苷体系及其N7-质子化和低能电子俘获形成的衍生物结构性质、键解离能、水解机理进行了计算调查.计算结果显示,质子化嘌呤核苷与中性嘌呤核苷的水解机理并不相同,且质子化可以明显减少N-糖苷键离子解离通道所需要的能量,降低其水解活化能,稳定水解产物,极大地促进N-糖苷键的水解.与质子化作用类似,嘌呤核苷俘获低能电子,也能显著地降低N-糖苷键的键解离能,显著地影响嘌呤核苷的稳定性. Although remarkable progresses of inosine-adenosine-guanosine nucleoside hydrolases have been made in recent years,the mechanistic details for the cleavage of N-glycosidic bond are still unclear. Herein, the equilibrium geometries, bond dissociation ener- gies,and hydrolysis mechanisms of N-glycosidic bonds in three types of purine nucleosides and their protonated and electron-attached derivatives have been investigated by B3LYP/6-311+ + G(2d, 2p) calculations. The present results show that protonation can re- markably reactivate the N-glycosidic bond and reduce the activation barrier for its cleavage and hydrolysis. Similarly, low-energy elec- tron attachment to the purine moiety can make N-glycosidic bond easier to break. Significant effects of protonation and excess electron on the mechanistic details and reaction thermodynamic properties also have been observed.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期1023-1029,共7页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目(21133007) 国家重点基础研究发展计划(973)项目(2011CB808504 2012CB214900)
关键词 质子化 低能电子俘获 嘌呤核苷 N-糖苷键 解离 水解 protonation low energy electron attachment purine nucleosides N-glycosidic bond cleavage hydrolysis
  • 相关文献

参考文献22

  • 1Versees W, Decanniere K, Pelle R, et al. Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax [J].J Mol Biol, 2001,307 ( 5 ) : 1363 1379.
  • 2Poreelli M, Peiluso I, Marabotti A, et al. Biochemical char acterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus :insights into mechanisms of protein stabili- za*ion[J].Arch Biochem Biophys, 2009,483 ( 1 ) :55-65.
  • 3Versees W, Decanniere K, Van Holsbeke, et al. Enzyme- substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax [J]. J Biol Chem, 2002,277 (18) : 15938-15946.
  • 4Berg M,Bal G,Goeminne A,et al. Synthesis of bicyclic N- arylmethyl-substituted iminoribitol derivatives as selective nucleoside hydrolase inhibitors [J]. Chem Med Chem,2009,4(2) :249-260.
  • 5Zulfiqar F, Kojima H, Nakanishi M, et al. Synthesis of carbocyclic 2-substituted adenine nucleoside and related analogs[J]. Nucleosides Nucleotides Nucleic Acids,2008, 27(10) :1153-1157.
  • 6Merino P,Tejero T, Delso I. Current developments in the synthesis and biological activity of aza-C-nucleosides:im mucillins and related compounds [J]. Curr Med Chem, 2008,15(10) :954-967.
  • 7Vers6es W,Steyaert J. Catalysis by nucleoside hydrolases [J]. Curr Opin Struct Biol,2003,13(6):731-738.
  • 8Vandemeulebroucke A,de Vos S, Van Holsbeke E, et al. A flexible loop as a functional element in the catalytic mechanism of nueleoside hydrolase from Trypanosorna vivax [J]. J Biol Chem, 2008,283 (32) : 22272-22282.
  • 9Berti P J,Tanaka K S E. Transition state analysis using multiple kinetic isotope effects:mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer[J]. Adv Phys Org Chem,2002,37:239-314.
  • 10Lovane E,Giabba B,Muzzolini L,et al. Structural basis for substrate specificity in group I nucleoside hydrolases [J]. Biochemistry,2008,47(15) :4418-4426.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部