期刊文献+

“滴水不沾”的一品红 被引量:1

Poinsettia of being water-repellent
下载PDF
导出
摘要 一品红叶面具有优异的超疏水性能,研究发现其表面分布有大量微米级的"人耳"状凹槽和纳米级的"星型"微凸起,这种微纳米级的复合阶层结构能使其表面吸附一层空气膜,液滴与其表面的接触是液、固、气的复合接触。此外,植物的表面有低表面能的蜡状物,微纳米级的复合阶层结构及其表面的低表面能物质的协同作用使其表面显示出优异的超疏水性能,该研究有望为仿生超疏水材料的制备提供有益的启发。 The leaf surface of poinsettia exhibited perfect superhydrophobicity with a water contact angle of 150°.Investigation showed there were many ear-like grooves with micrometer and star-like convexes with nanometer on the leaf surface,this kind of micro and nanometer composite hierarchical structures absorbed air on the surface,consequently,the contact of water droplets with leaf surface was a composite contact between liquid-solid-air.Additionally,there existed low surface energy material of wax on the leaf surface.The co-exist effect of composite hierarchical structures and low surface energy on the surface of leaf leaded to its superhydrophobicity.This research may provide valuable inspiration in the biomimetic fabrication of superhydrophobic materials.
出处 《化工新型材料》 CAS CSCD 北大核心 2012年第11期46-47,共2页 New Chemical Materials
基金 甘肃省高校河西走廊特色资源利用省级重点实验室项目(XZ1010)
关键词 一品红 超疏水 滚动角 复合阶层结构 Cassie’s理论 poinsettia superhydrophobicity glide angle composite hierarchical structure Cassie's theory
  • 相关文献

参考文献18

  • 1Barthlott W;Neinhuis C.查看详情[J],Planta19971-8.
  • 2Feng L;Li S H;Li Y S.查看详情[J],Advanced Materials20021857-1860.
  • 3(O)ner D;McCarthy T J.查看详情[J],Langmuir20007777-7782.
  • 4Sun T;Feng L;Gao X;Jiang L.查看详情[J],Accounts of Chemical Research2005644-652.
  • 5Shi F;Song Y;Niu J.查看详情[J],Chemistry of Materials20061365-1368.
  • 6Liu Y;Mu L;Liu B.查看详情[J],Chem -Euro J20052622-2631.
  • 7冯晓娟,石彦龙,杨武,安红钢.旱金莲叶、花表面的超疏水性研究,[J].化工新型材料,2011,39(8):103-105. 被引量:3
  • 8Wang R;Hashimoto K;Fujishima A.查看详情[J],Advanced Materials1998135-138.
  • 9Neinhuis C;Barthlott W.查看详情[J],Annals of Botany1997667-677.
  • 10Beattie G A;Marcell L M.查看详情[J],Plant Cell and Environment20021-16.

二级参考文献16

  • 1郭志光,刘维民.仿生超疏水性表面的研究进展[J].化学进展,2006,18(6):721-726. 被引量:47
  • 2He B, Patankar N A, Lee J. [J]. Langmuir, 2003, 19:4999- 5003.
  • 3Fresnais J, Chapel J P, Poncin-Epaillard F. Synthesis of trans- parent superhydrophobic polyethylene surfaces [J]. Surface and Coating Technology, 2006, 200: 5296-5305.
  • 4Guo C W, Feng L, Zhai J, et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer [J] Chem Phys Chem, 2004, 5: 750-753.
  • 5Woodward I, Schofield W C E, Roucoules V, etal. Super-hy- drophobic surfaces produced by plasma fluorination of polybuta- diene films [J]. Langmuir, 2003, 19: 3432-3438.
  • 6Li S, Li H, Wang X, et al. [J]. J Phys Chem B, 2002, 106: 9274-9276.
  • 7Han J T, Lee D H, Ryu C Y, et al. Fabrication of superhydro- phobic surface from a supramolecular organosilane with quad- ruple hydrogen bonding [J]. J Am Chem Soc, 2004, 126: 4796-4797.
  • 8Jiang Z X, Geng L, Huang Y D. Design and fabrication of hy- drophobic copper mesh with striking loading capacity and pres- sure resistance. [J]. J Phys Chem C, 2010, 114, 9370-9378.
  • 9Morra M, Occhiello E, Garbassi F. [J] Langmuir, 1989, 5: 872-876.
  • 10Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc, 1944, 40:546-551.

共引文献47

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部