期刊文献+

超低减反纳米结构对晶体硅太阳电池性能的影响 被引量:1

THE INFLUENCE OF THE SURFACE NANOSTUCTURE WITH EXCELLENT ANTI-REFLECTION PROPERTIES TO THE CRYSTAL SILICON SOLAR CELL'S CHARACTERISTICS
下载PDF
导出
摘要 介绍了一种利用湿法化学腐蚀方法在125mm×125mm硅衬底上制备的具有超低光学减反的效率为12.68%的纳米线表面结构太阳电池。除了表面结构的制备过程,该电池其余的工艺均采用传统生产线工艺(包括铝背场的制备、负电极的制备)。在300~1000nm波段,纳米线结构的反射率低于3%;同时相比金字塔绒面结构,吸收率也提高了近10%。根据外量子效率测试,分析了所制备电池的基本性能,并讨论了纳米表面结构太阳电池比传统金字塔绒面电池效率低的原因。分析表明,合适的钝化及电极制备工艺对纳米表面结构电池性能的提高具有十分重要的作用。 The paper introduce a 12.68% silicon nanowire solar cell with excellent anti-reflectance ability synthe- sized on 125mm ×125mm silicon substrate using wet chemical etch method. The fabrication process including Al- back surface field and metal grid formation are conventional industry technique except surface texture. The reflec- tance measurement was used to scale the reflectance ability of silicon nanowire, and the lowest reflectance of less than 3% is achieved in wavelengths 300-1000nm. The absorption of silicon nanowire is improved nearly 10% com- pared with pyramids textured surface. According to external quantum efficiency measurement, we analyzed the bas- ic parameters of the solar cells made by us. Also we discuss the reason why the efficiency of silicon nanowire solar cell is lower than the pyramids textured solar cells. We conclude that proper passivation and metal contact fabrica- tion technique is very important for nanostructure solar cells.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第11期1845-1849,共5页 Acta Energiae Solaris Sinica
基金 国家重点基础研究发展(973)计划(2009CB939703) 国家高技术研究发展(863)计划(2012AA050304) 国家自然科学基金(51172268 11104319 2013年度基金重点) 北京市科委项目(Y2BK024001) 中国科学院方向性项目(Y1YT064001 Y1YF034001 Y2YF014001)
关键词 纳米线 反射率 太阳电池 外量子效率 钝化 silicon nanowire reflectance solar cells external quantum efficiency passivation
  • 相关文献

参考文献8

  • 1Law M, Goldberger J, Yang P D. Semiconductor nanowires and nanotubes [ J ]. Annual Review of Materials Research, 2004, 34( 1): 83-122.
  • 2Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[ J]. Applied Physics Letters, 1964, 4(5) : 89-90.
  • 3Kodambaka S, Tersoff J, Reuter M C, et al. Diameter- independent kinetics in the vapor-liquid-solid growth of Si nanowires [ J ]. Physical Review Letters, 2006, 96 ( 9 ) : 1-4.
  • 4Pan Z W, Dai Z R, Xu L, et al. Temperature-controlled growth of silicon-based nanostructures by thermal evapora- tion of SiO powders[ J]. The Journal of Physical Chemis- try B, 2001, 105 (13):2507-2514.
  • 5Werner P, Zakharov N D, Gerth G, et al. On the forma- tion of Si nanowires by molecular beam cpitaxy[ J]. Inter- national Journal of Materials Research, 2006, 97 (7) : 1008-1015.
  • 6Peng K Q, Xu Y, Wu Y, et al. Aligned single- crystalline Si nanowire arrays for photovoltaic applications [J]. Small, 2005, 1 (11): 1062-1067.
  • 7Sivakov V, Andra G, Gawlik A, et al. Silicon nanowire- based solar cells on glass: synthesis, optical properties, and cell parameters [ J ]. Nano Letter, 2009, 9 ( 4 ) : 1549-1554.
  • 8Kayes Brendan M, Atwater Harry A. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [ J ]. Journal of Applied Physics, 2005, 97(11 ) : 114302-1-11.

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部