期刊文献+

基于FFT的快速高精度正弦信号频率估计算法 被引量:5

A Fast and Accurate Algorithm for Frequency Estimation of Sinusoid Signal Based on FFT
下载PDF
导出
摘要 提出了一种新的基于FFT的快速高精度正弦信号频率估计算法。通过分析Jacobsen算法和傅里叶系数插值迭代算法的性能,指出Jacobsen算法计算简单,精度不高;傅里叶系数插值迭代算法精度较高,但需要进行两次迭代,每次迭代均需计算两点的FFT系数,计算量较大。结合这两种算法,文中提出一种改进的高精度算法。该算法采用Jacobsen算法作为迭代初值,仅需进行一次迭代就能达到原迭代算法两次迭代的性能。仿真结果表明该算法在FFT信噪比门限以上全频段估计的均方根误差十分接近克拉美罗下限,具有较强的抗噪性能,且计算量较少,易于实时实现。 A fast and accurate algorithm based on FFT for frequency estimation of sinusoid signal is proposed in this paper. The performances of Jacobsen algorithm and Fourier-coefficient-interpolation iterative algorithm are investigated in this paper. It shows that Jacobsen algorithm has a less computational load, but poor precision, and the Fourier-coefficient-interpolation iterative algo- rithm has higher precision, but it needs two iterations. Because for each iteration, FFT coefficients of two frequency points are need to computed, it will result in a great computation burden. By combining the two algorithms, an improved approach is pro- posed. The improved approach iterates once with the initial value from Jacobsen algorithm and the performance is nearly the same as two iterations of original iterative algorithm. Simulation results indicate that the frequency estimation variance of this approach approaches to CRLB (Cramer-Rao Lower Bound) throughout the frequency band and performs high anti-noise property. The ap- proach is convenient for real-time realization in real applications due to the less calculation load.
出处 《现代雷达》 CSCD 北大核心 2012年第11期41-44,48,共5页 Modern Radar
关键词 频率估计 FFT系数 Jacobsen算法 迭代算法 :frequency estimation FFT coefficient Jacobsen algorithm iteration algorithm
  • 相关文献

参考文献14

  • 1Rife D C, Boorstyn R R. Single tone parameter estimation from discrete-time observations [ J ]. IEEE Transactions on Information Theory, 1974, 20 (5) : 591-598.
  • 2Abatzoglou T J. A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on newton's method [ J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 ( 1 ) : 77-89.
  • 3Kay S M. A fast and accurate single frequency estimator [ J ]. IEEE Transanctions on Acoustics, Speech, and Signal Processing, 1989, 37(12) : 1987-1990.
  • 4Fitz M P. Further results in the fast estimation of a single frequency [ J ]. IEEE Transactions on Communications, 1994, 42(2) :862-864.
  • 5Luise M, Regiannini R. Carrier frequency recovery in all digital modems for burst mode transmissions [ J ]. IEEE Transactions on Communications, 1995, 43(2): 1169-1178.
  • 6Brown T, Wang M M. An iterative algorithm for single-frequency estimation [ J ]. IEEE Transactions on Signal Processing, 2002, 50(11): 2671-2682.
  • 7马建林,张娜敏,郭汝江.一种快速的谱分析迭代法[J].现代雷达,2012,34(3):30-34. 被引量:3
  • 8黄玉春,黄载禄,黄本雄,徐书华.基于FFT滑动平均极大似然法的正弦信号频率估计[J].电子与信息学报,2008,30(4):831-835. 被引量:19
  • 9邓振淼,刘渝.正弦波频率估计的牛顿迭代方法初始值研究[J].电子学报,2007,35(1):104-107. 被引量:56
  • 10李任科,何培宇,黄骏,高勇.高精度正弦信号频率估计算法研究[J].四川大学学报(自然科学版),2011,48(3):596-602. 被引量:3

二级参考文献62

共引文献77

同被引文献34

  • 1齐国清.几种基于FFT的频率估计方法精度分析[J].振动工程学报,2006,19(1):86-92. 被引量:83
  • 2周剑雄,陈付彬,石志广,付强.补零离散傅立叶变换的插值算法[J].信号处理,2007,23(5):690-694. 被引量:7
  • 3Rife D C, Boorstyn R R. Single tone parameter estimation from discrete-time observations [ J ]. IEEE Trans. On In- formation Theory, September 1974, 20(5) :591-598.
  • 4Quinn B G. Estimating frequency by interpolation using Fourier coefficients [ J ]. IEEE Trans. Signal Process. , 1994, 42 (5) : 1264-1268.
  • 5Quinn B G. Estimation of frequency, amplitude, and phase from the DFT of a time series [ J ]. IEEE Trans. Signal Process. , 1997, 45(3) :814-817.
  • 6Maeleod M D. Fast nearly ML estimation of the parame- ters of real or complex single tones or resolved multiple tones[J]. IEEE Trans. On Signal Processing, 1998, 46 ( 1 ) : 141-148.
  • 7Jacobsen E, Kootsookos P. Fast, accurate frequency esti- mators [ J ]. IEEE Signal Processing Magazine, May 2007, 24(3) :123-125.
  • 8Candan C. A method for fine resolution frequency estima- tion from three DFT samples[ J]. IEEE Signal Processing Letters, 2011, 18(6) :351-354.
  • 9Aboutanios E, Mulgrew B. lterative frequency estimation by interpolation on Fourier coefficients [ J ]. IEEE Transactions on Signal Processing, 2005, 53(4) :1237-1242.
  • 10Fang Luoyang, Duan Dongliang, Yang Liuqing. A new DFT-based frequency estimator for single-tone complex si- nusoidal signals [ C ]//2012-MILCOM 2012. IEEE, Orlan- do, FL, Oct. 2012.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部