期刊文献+

双馈风力发电机轴承的早期诊断 被引量:3

Incipient Bearing Fault Detection in DFIG-Based Wind Turbines
下载PDF
导出
摘要 双馈风力发电机轴承的状态监测和早期故障诊断可以及时发现轴承故障,有效地降低风电场的运行和维护费用。首先用加速度传感器采集轴承振动信号,然后用两种方法进行特征信号分析:一是对信号进行经验模式分解,仅提取第一模态函数做Hilbert变换,从而根据包络图判断轴承的早期故障;二是对信号进行预处理,滤去与轴承故障无关的主要分量,再采用小波滤波器提取微弱的故障信号,进而根据故障指标的数值来判断。最后对这两种方法对比研究,试验结果表明,方法2可以更加有效地诊断出早期故障,具有一定的工程应用价值。 The conditon monitoring and incipient fault diagnosis of bearing of double fed induction generation (DFIG) can detect the fault timely and reduce wind farm's operation and maintenance cost effectively. Collec- ting the bearing signal through vibration acceleration sensor, and then the signal analysis can use the following two ways. One is the empirical mode decomposition (EMD) which is used to extract the first intrinsic mode function for its Hilbert transform, and then determine the incipient bearing failure according to the change of envelope graph. The other is to filter the main irrelative components of bearing fault, and then extract the weak signal by wavelet filter, thus it can determine bearing fault according to the value of fault index. Finally, comparing the two methods, the experimental results show that the second method is a more effective way to diagnosis the incipient bearing failure of DFIG,and it has some value in engineering.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2012年第6期26-30,共5页 Proceedings of the CSU-EPSA
基金 国家自然科学基金项目(51177039) 教育部博士点基金项目(20090944110011)
关键词 双馈发电机 轴承早期故障 经验模式分解 第一模态函数 小波滤波 double fed induction generation(DFIG) incipient bearing fault empirical mode decomposition(EMD) the first intrinsic mode wavelet filter
  • 相关文献

参考文献10

二级参考文献44

  • 1陈祥训.实时跟踪电压闪变幅度的移动不变小波分析方法[J].中国电机工程学报,2004,24(10):1-7. 被引量:33
  • 2张彼德,欧健,孙才新,王柯柯,潘凌.汽轮发电机多故障诊断的SOM神经网络方法[J].重庆大学学报(自然科学版),2005,28(2):36-38. 被引量:16
  • 3堵俊,邵振国,郭晓丽,吴晓,包志华.用小波分析提取电压闪变的幅值调制信号[J].电力系统及其自动化学报,2006,18(3):34-37. 被引量:17
  • 4李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报,2006,26(14):24-30. 被引量:110
  • 5Sher Zaman Khan , Zhu Deheng , Jin Xianhe , et al . A new adaptive technique for on-- line partial discharge monitoring[J]. IEEE Trans on Dielectrics and Electrical Insulation , 1995,2(4) :700--707.
  • 6Satish L, Nazneen B. Wavelet--based denoising of partial discharge signals buried in excessive noise and interference[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2003, 10(2) .354--367.
  • 7Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J].Proceedings of the Royal Society of London, Series A, 2004,460(2046) :1597--1611.
  • 8Caselitz P,Giebhardt J.Rotor condition monitoring for improved operational safety of offshore wind energy converters[J].Journal of Solar Energy,2005,127(2):253-261.
  • 9HUANG N E. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond A,1998,454:903-995.
  • 10HUANG N E, SHEN Z,LONG S R. A new view of nonlinear water waves: The hilbert spectrum[J].Annu Rev Fluid Mech, 1999, 31:417-457.

共引文献167

同被引文献24

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部