期刊文献+

基于速度观测器的GMS摩擦模型辨识与补偿 被引量:15

GMS friction model identification and compensation based on velocity observer
下载PDF
导出
摘要 摩擦是伺服系统在低速运动时精度降低的主要非线性因素之一。采用基于模型的摩擦补偿可以有效地预测摩擦力,并实现误差补偿,因此利用可全面描述系统摩擦力的GMS摩擦模型预测伺服系统的摩擦力。为提高此模型参数的辨识精度,设计了全维速度观测器提供反馈速度信息,克服低速时速度测量误差带来的影响;并基于此观测器,给出了GMS摩擦模型的参数辨识的实验方法。为验证所提出的摩擦补偿及辨识方法的有效性,在一新型的空间大型末端执行器的拖动系统进行了拖动实验。实验结果表明,通过此摩擦模型补偿,可使拖动系统的位置跟踪精度优于0.02 mm,与具有固定参数的Stribeck摩擦模型相比,位置跟踪精度提高超过30%。 Friction is a kind of strong nonlinear factor that severely degrades accuracy of servo system.The fiction compensation based on model can effectively predict the friction amplitude and compensate the dynamic error.The friction is predicted by the generalized Maxwell-slip model(GMS).In order to improve the parameters identification accuracy of friction model,and overcome the error effects of the low speed velocity measurement,the full-order speed observer was designed as feedback speed information.Based on this observer,an experimental parameter identification method of GMS friction model was implemented.In order to verify the proposed identification method effectiveness for friction compensation,some dragging experiments on a late-model space large end-effector were done.Results of experiments show that the precision of the position tracking can reach 0.02 mm by this friction compensation,increased more than 30% compared with Stribeck friction model which has fixed parameters.
出处 《电机与控制学报》 EI CSCD 北大核心 2012年第11期70-75,共6页 Electric Machines and Control
基金 国家“863”科技发展计划(2011AA7045041)
关键词 GMS摩擦模型 摩擦辨识 速度观测器 摩擦补偿 伺服系统 generalized Maxwell-slip model friction identification velocity observer friction compensation servo system
  • 相关文献

参考文献10

  • 1周金柱,段宝岩,黄进.LuGre摩擦模型对伺服系统的影响与补偿[J].控制理论与应用,2008,25(6):990-994. 被引量:41
  • 2黄显林,鲍文亮,卢鸿谦,尹航.一种具有时变观测器增益的摩擦补偿方法[J].电机与控制学报,2011,15(11):46-49. 被引量:4
  • 3王毅,何朕,王广雄.一种实用的摩擦模型[J].电机与控制学报,2011,15(8):59-63. 被引量:15
  • 4ARMSTRONG-HELOUVRY B, DUPONT P, DE WIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction [ J ]. Automatica,1994 ,30 (7) : 1083 - 1138.
  • 5DE WIT C C, OLSSON H, ASTRON K J, et al. Dynamic friction models and control design [ C ]//1993 American Control Conference, June 2- 4, 1993, San Francisco, USA. 1993:1920 - 1926.
  • 6LAMPAERT V, AL-BENDER F A, SWEVERS J. A generalized Maxwell-slip friction model appropriate for control purposes[ C ]// Proceedings of the 2003 International Physics and Control Conference, August 20 - 22, 2003, St. Petersburg, Russia. 2003, 4: 1170 - 1177.
  • 7AL-BENDER F A, LAMPAERT V, SWEVERS J. The generalized maxwell-slip model : a novel model for friction simulation and compensation [ J]. IEEE Transactions on Automatic Control, 2005, 50( 11 ) :1883 - 1887.
  • 8KELLY R, SANTIBANEZ V. Global regulation of elastic joint robots based on energy shapping [ J ]. IEEE Transactions on Automatic Control, 1998, 43(10) :1451 - 1456.
  • 9LUENBERGER D. An introduction to observers[J]. IEEE Transactions on Automatic Control, 1971, 16(6) :596 -602.
  • 10RUDERMAN M, HOFFMANN F, BERTRAM T. Modeling and identification of elastic robot joints with hysteresis and backlash [ J]. IEEE Transactions on Industrial Electronics, 2009, 56 (10) :3840 -3847.

二级参考文献22

  • 1李文磊,张智焕,井元伟,刘晓平.基于自适应Backstepping设计的TCSC非线性鲁棒控制器[J].控制理论与应用,2005,22(1):153-156. 被引量:14
  • 2BRAIN A H, PIERRE D, CARLOS C D W. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083 - 1138.
  • 3CARLOS C D W, OLSSON H, ASTROMJ, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419 - 425.
  • 4FARID A B, VINCENT L, JAN S. The generaized maxwell-slip model: a novel model for friction simulation and compensation[J]. IEEE Transactions on Automatic Control. 2005, 50(11): 1883 - 1887.
  • 5ASHWANI K P, JINHYOUNG O, DENNIS S B. On the lugre model and friction- induced hysteresis[C]//Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota: MIT Press, 2006, 8:3247 - 3252.
  • 6TAN Y L, CHANG J C, TAN H L. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties[J]. IEEE Transactions on Industrial Electronics. 2003, 50(5): 944 - 952.
  • 7CARLOS C D W, LISCHINSKY E Adaptive friction compensation with partially known dynamic friction model[J]. International Journal of Adaptive Control and Signal Processing. 1997, 11(1): 65 - 80.
  • 8ARMSTRONG-HELOUVRY B, DUPONT P, CANUDAS-DE-WIT C. A survey of models, analysis tools and compensation methods for the control of machines with friction [ J]. Automatica, 1994, 30(7) : 1083 -1138.
  • 9DAHL P. A solid friction model [ R ]. The Aerospace Corp., Tech. Rep. TOP-0158 (3107 - 18) - 1, E1 Segundo, CA. 1968.
  • 10ASTROM K J, CANUDAS-DE-WIT C. Revisiting the LuGre fric- tion model[ J]. IEEE Control Systems Magazine, 2008, 28 (6): 101 -114.

共引文献51

同被引文献101

  • 1王宏,于泳,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004,24(7):151-155. 被引量:138
  • 2袭著燕,张涛,路长厚.数控伺服进给系统中摩擦补偿控制研究进展[J].现代制造工程,2006(1):21-25. 被引量:13
  • 3MOREL G, IAGNEMMA K, DUBOWSKY S. The precise control of manipulators with high joint-friction using base force/torque sensing[J]. Automatica, 2000, 36(7): 931-941.
  • 4LIU G, GOLDENBERG A A, ZHANG Y. Precise slow mo- tion control of a direct-drive robot arm with velocity esti- mation and friction compensation[J]. Mechatronics, 2004, 14(7): 821-834.
  • 5MOSTEFAI L, DENAI M, SEHOON O, et al. Optimal con- trol design for robust fuzzy friction compensation in a robotjoint[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3832-3839.
  • 6BITTENCOURT A C, GUNNARSSON S. Static friction in a robot joint-modeling and identification of load and temperature effects[J]. Journal of Dynamic Systems Mea- surement and Control-Transactions of the ASME, 2012, 134(5): 1-10.
  • 7WANG Y E WANG D H, CHAI T Y. Modeling and con- trol compensation of nonlinear friction using adaptive fuzzy systems[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2445-2457.
  • 8DEW/T C C, OLSSON H, ASTROM K J, et al. A new mod- el for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
  • 9PHILLIPS S M, BALLOU K R. Friction modeling and compensation for an industrial robot[J]. Journal of Robotic Systems, 1993, 10(7): 947-971.
  • 10HAMON E GAUTIER M, GARREC E Dynamic identifi- cation of robots with a dry friction model depending on load and velocity[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, China. 2010:6187-6193.

引证文献15

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部