期刊文献+

基于粒子群优化的神经网络自适应控制算法 被引量:16

Neural Network Adaptive Control Algorithm Modified by PSO
下载PDF
导出
摘要 针对一些非线性场合或者控制对象可变的条件下,传统PID控制达不到要求且需要靠经验不断地调整PID参数的情况,提出了一种基于粒子群优化(particle swarm optimization,PSO)的神经网络自适应控制算法。该算法结合传统PID控制、BP神经网络和PSO全局优化算法,用PSO算法优化BP神经网络的初始权值,然后用优化后的BP神经网络在线调整PID参数。优化过程中引入了变异操作,并考虑激活函数增益及隐含层数的选择对PSO算法和BP神经网络的综合影响。该算法克服了神经网络容易陷入局部极小值以及收敛速度慢的缺陷,仿真结果表明,该算法在精确性和实时性上有很大的改进。 As in some situations the control objects are nonlinear or variable,the traditional PID control can not meet the requirements and the PID parameters need to be constantly adjusted by em- pirical knowledge. A new neural network adaptive control algorithm modified by PSO was proposed herein. It consisted of the traditional PID, BP neural network and the PSO global optimization algo- rithm which was used to optimize the initial weights of BP neural network. The optimized BP neural network was then used to adjust PID parameters on--line. Variation operation was introduced to the optimization process and the comprehensive influence on PSO and BP introduced by the choice of the activation function gain and the number of hidden layers was considered. The algorithm can improve the problem more effectively that neural network goes easily into the local minimum value and has slow convergence speed. Simulation results show that the proposed method has greatly improved in ac- curacy and real--time performance.
机构地区 武汉理工大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第22期2732-2738,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50905133) 湖北省自然科学基金重大国际合作交流项目(2009BFA006)
关键词 PSO算法 BP神经网络 PID控制 自适应控制 particle swarm optimization (PSO) algorithm BP neural network PID control adap- tive control
  • 相关文献

参考文献16

  • 1张先鹤,詹习生.CMAC与非线性PID复合控制器在机器人中的应用[J].河北工业科技,2007,24(3):155-158. 被引量:3
  • 2Xu Guozheng, Song Aiguo,Li Huijun. Adaptive Im-pedance Control for Upper- limb Rehabilitation Ro-bot Using Evolutionary Dynamic Recurrent FuzzyNeural Network[JJ. Journal of Intelligent and Ro-botic Systems: Theory and Applications, 2011, 62(3/4):501-525.
  • 3Liu Dongsheng,Ju Chunhua. Application of An Im-proved BP Neural Network in Business Forecasting[C]//Proceedings of the World Congress on Intelli-gent Control and Automation. Dalian, 2006 : 2700 -2704.
  • 4Radulovic J, Rankovic V. Feedforward Neural Net-work and Adaptive Network — based Fuzzy Infer-ence System in Study of Power Lines [J].ExpertSystems with Applications,2010,37(1):165-170.
  • 5Guo Beitao, Liu Hongyi, Luo Zhong, et al. AdaptivePID Controller Based on BP Neural Network[C]//2009 International Joint Conference on Artificial In-telligence. Hainan, 2009 : 148-150.
  • 6Gao Shuangxi,Cao Shufu,Zhang Ying. Research onPID Control Based on BP Neural Network and ItsApplication[C]//20l0 2nd International Asia Con-ference on Informatics in Control,Automation andRobotics. Wuhan,2010:91-94.
  • 7Li Xiaozhong,Li Qiu. A Parameter Adjustment Al-gorithm of BP Neural Network[C3//Proceedings of2008 3rd International Conference on IntelligentSystem and Knowledge Engineering. Xiamen, 2008:892-895.
  • 8Lazzus? Juan A. Autoignition Temperature Predic-tion Using An Artificial Neural Network with Parti-cle Swarm Optimization[J3. International Journal ofThermophysics,2011,32(5) : 1-17.
  • 9Yin Fei,Mao Huajie,Hua Lin. A Hybrid of BackPropagation Neural Network and Genetic Algorithmfor Optimization of Injection Molding Process Pa-rameters [J]. Materials and Design,2011, 32 ( 6 ):3457-3464.
  • 10Shen Changyu, Wang Lixia, Li Qian. Optimizationof Injection Molding Process Parameters UsingCombination of Artificial Neural Network and Ge-netic Algorithm Method CJ].Journal of MaterialsProcessing Technology,2007 ,183(2/3) :412-418.

二级参考文献7

共引文献7

同被引文献140

引证文献16

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部