期刊文献+

NH_4^+-Mg^(2+)-PO_4^(3-)-H^+-H_2O体系的优势区相图(英文) 被引量:1

Predominance Diagrams for NH_4^+-Mg^(2+)-PO_4^(3-)—H^+-H_2O System
下载PDF
导出
摘要 通过优势区相图的构建对NH4+-Mg2+-PO43--H+-H2O体系的热力学平衡关系进行了研究。在不同镁、磷物质的量比和离子强度的条件下绘制了lgCT,Mg-lgCT,P和lgCT,P-pH相图,确定了MgNH4PO4.6H2O、Mg3(PO4)2.8H2O、MgHPO4.3H2O和Mg(OH)2的热力学稳定区。结果表明,在相当广的pH范围内,MgNH4PO4.6H2O和Mg3(PO4)2.8H2O都是主要存在的固相;在较低pH和较高磷浓度的条件下,MgNH4PO4.6H2O和MgHPO4.3H2O可以共存;而MgNH4PO4.6H2O和Mg(OH)2在碱性条件下更为稳定。当MgNH4PO4.6H2O、Mg3(PO4)2.8H2O与液相共存、pH=9.08~9.52时,溶液总氮浓度达到最低值。lgCT,Mg-lgCT,P和lgCT,P-pH相图可以用于指导磷酸铵镁的沉淀-溶解平衡过程,有利于废水中氨氮的脱除和回收。 The thermodynamics of NH44^+-Mg^2+-PO4^3--H^+-H2O system was investigated based on the construction of predominance diagrams. The lglgCTMg-lgCTP and lgCTs-pH diagrams were constructed at an arbitrary Mg/P molar ratio with consideration of the ion strength influence(CTMg: total concentration of magnesium; CTy: total concentration of phosphorus; CTN: total concentration of nitrogen). The thermodynamic stable zones of struvite (MgNH4PO4· 6H20), bobierrite (Mg3(PO4)2· 8H20), newberyite (MgHPO4· 3H20), and magnesium hydroxide (Mg(OH)2) were determined. The results show that struvite and bobierrite are the dominating phases in a wide range of pH value. Struvite and newberyite coexist with solute phase at low pH value and high total concentration of phosphorus while struvite and magnesium hydroxide are more stable at the alkaline condition. The minimum total concentration of nitrogen appears at pH value of 9.08-9.52 while struvite and bobierrite coexist with the solute phase. The predominance diagrams could be used to predict the precipitation-dissolution equilibrium of struvite for ammonia nitrogen removal and recovery from wastewater.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2012年第12期2605-2611,共7页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51174238)资助项目
关键词 氨氮 磷酸铵镁 热力学 优势区相图 ammonia nitrogen struvite thermodynamics predominance diagrams
  • 相关文献

参考文献30

  • 1Bonmati A, Flotats X. Waste Manag., 2003,23(3):261-272.
  • 2Doyle J D, Parsons S A. Water Res., 2002,36(16):3925-3940.
  • 3Jokela J P Y, Kettunen R H, Sormunen K M, et al. Water Res., 2002,36(16):4079-4087.
  • 4Uludag-Demirer S, Demirer G N, Chen S. Process Biochem., 2005,40(12):3667-3674.
  • 5Li X Z, Zhao Q L, Hao X D. Waste Manag., 1999,19(6):409-415.
  • 6Zhang W X, Lau A. J. Chem. Technol. Biotechnol., 2007,82 (6):598-602.
  • 7Zhang C, Chen Y G. Environ. Sci. Technol., 2009,43(16): 6164-6170.
  • 8Taylor A W, Frazier A W, Gurney E L. Trans. Faraday Soc., 1963,59:1580-1584.
  • 9Snoeyink V L, Jenkins D. Water Chemistry. New York: John Wiley and Sons, 1980:306-309.
  • 10Stumm W, Morgan J J. Aquatic Chemistry. New York: Wiley-Interscience, 1970:405-409.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部