摘要
为了解决如何选择合适的基准数据与实时数据进行控制性能评估问题,提出一种基于多变量分类的方法.用一种综合相似因子来衡量当前实时数据和某一工况下数据的相似性,确定实时数据所属的工况,而后再进行控制性能评估,通过仿真结果验证了新方法的有效性.
To choose the suitable benchmark data for data-driven controller performance monitoring from data based on kinds of multiple mode in the history database, a new method based on multiple variables classification is proposed. First the method provides a combined similarity factor to measure the similarity between realtime acquisition data and data from some mode in the history database, and then it determines the mode that real-time data belongs to, finally it assesses the controller performance. Simulation study demonstrates the efficiency of the proposed approach.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2012年第11期81-86,共6页
Journal of Harbin Institute of Technology
基金
国家自然科学基金资助项目(61134007)
关键词
多工况
相似因子
性能评估
multiple mode, similarity factor, performance assessment