期刊文献+

基于加权自回归隐马尔科夫模型的语音识别 被引量:1

下载PDF
导出
摘要 对于非特定人语音识别问题,针对隐马尔科夫模型中假设提取的观察矢量之间相互独立且数据不足的困难,文章在连续隐马尔科夫(CHMM)模型的基础上提出了基于加权自回归HMM(WARHMM)的语音识别方法,该方法利用加权自回归过程得到观察矢量,从而获得隐状态输出。这种方法可以充分利用已有的观察数据,适合于实际随机性较强的语音信号的识别。实验结果证明了提出方法的有效性。
出处 《统计与决策》 CSSCI 北大核心 2012年第22期80-82,共3页 Statistics & Decision
基金 国家自然科学基金项目(60874002) 上海市教委重点科技创新项目(09ZZ158) 上海市重点学科项目(S30501) 上海市研究生创新基金项目(JWCXSL1002)
  • 相关文献

参考文献5

  • 1H.Matumoto,et.al. Evaluation of MeI-LPC Cepstrum in A Large Vo- cabulary Continuous Speech Recognition [C].Proc.ICASSP-2001, 2001.
  • 2D.Ishioka,et.al. A Study for the Effectiveness of Line Spectrum Pair on Phone Reco,,nition[Cl.IEICE Technical Report.2000.
  • 3K.Igarashi,et.al. Speech Recognition Using LSP Frequency Interval and CSM Intensity Pairs[C].IEICE Technical Report,2002.
  • 4何强,何英.MATLAB扩展编程[M]靖华大学出版社,2002.
  • 5刘震,王厚军,龙兵,张治国.一种基于加权隐马尔可夫的自回归状态预测模型[J].电子学报,2009,37(10):2113-2118. 被引量:14

二级参考文献16

  • 1A Goel, R J Graves. Electronic System Reliability: Collating Prediction Models[ J]. IEEE Transactions on Device and Materials Reliability, 2006,6(2) : 258 - 265.
  • 2J D Parry, J Rantala, C J M Lasance. Enhanced Electronic System Reliability-Challenges for Temperature Prediction[J]. IEEE. Transactions on Components and Packaging Technologies, 2002,25(4) :533 - 538.
  • 3A Abraham. A Soft Computing Approach for Fault Prediction of Electronic Systems [ A ]. Proceedings of the Second International Conference on Computers in Industry [ C ]. Bahrain: Bahrain Society of Engineers Press,2000.83 -91.
  • 4K Benabdeslem. Hybrid neural system for time series prediction [ A]. Proceedings of the 28th International Conference on Information Technology Interfaces [ C ]. Croatia: IEEE Press, 2006. 349 - 354.
  • 5D Ruta, B Gabrys. Neural Network Ensembles for Time Series Prediction[A]. Proceedings of International Joint Conference on Neural Networks[C]. Orlando: IEEE Press,2007.1204 - 1209.
  • 6Z W Shi,M Han. Support vector echo-state machine for chaotic time-series prediction[ J ]. IEEE Transactions on Neural Networks,2007,18(2) : 359 - 372.
  • 7S F Crone, S Lessmann, S Pietsch. Forecasting with Computational Intelligence-An Evaluation of Support Vector Regression and Artificial Neural Networks for Time Series Prediction[ A]. Proceedings of 2006 International Joint Conference on Neural Networks[ C]. Vancouver: IEEE Press,2006. 3159- 3166.
  • 8M A LFilho, T Ohishi, R Ballini. Ensembles of Selected and Evolved Predictors using Genetic Algorithms for Time Series Prediction[A]. Proceedings of IEEE Congress on Evolutionary Computation[ C ]. Vancouver: IEEE Press, 2006. 2872 - 2879.
  • 9O Castillo,P Melin. Comparison of Hybrid Intelligent Systems, Neural Networks and Interval Type-2 Fuzzy Logic for Time Series Prediction [ A ]. Proceedings of International Joint Conference on Neural Networks[ C]. Orlando: IEEE Press, 2007. 3086 - 3091.
  • 10N Seshadri, C Stmdberg. List Viterbi decoding algorithms with applications [ J ]. IEEE Transactions on Communications, 1994, 42(2) :313 - 323.

共引文献13

同被引文献1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部